

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

USE OF THE REDUCED PRECISION REDUNDANCY
(RPR) METHOD IN A RADIX-4 FFT

IMPLEMENTATION

by

Athanasios Gavros

September 2010

 Thesis Co-Advisors: Herschel Loomis
 Alan Ross

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Use of the Reduced Precision Redundancy (RPR)
Method in a Radix-4 FFT Implementation

6. AUTHOR(S) Athanasios Gavros

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol Number: ___N/A___.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Reduced precision redundancy (RPR), as a new method for improving fault tolerance in FPGAs, appears promising
in replacing triple modular redundancy (TMR) to prevent the single event effects due to radiation in arithmetic
processes. As a test of this approach, the RPR technique was used to implement a Radix-4 fast Fourier transform
(FFT). This design was implemented in a Xilinx Virtex 2 FPGA in order to find the possible gain in speed and power
as compared to the TMR method.

This thesis deals with a 64-point Radix-4 in-place FFT, based on an improved FFT algorithm. The whole
FFT structure was implemented based on self-designed modules and by manipulating the embedded Virtex II FPGA’s
modules. The point was to create a fast and small FFT module that could be altered according to specific application
requirements. The implementation of the FFT was successful, managing to handle data in real time at a speed of
134MHz.

Based on this FFT design, the next challenge was the implementation of TMR and RPR modules. The first
attempt was the TMR structure, implemented by creating three identical replicas of the FFT and installing a voter per
FFT stage. This implementation was unsuccessful due to space limitations. The next step was the alteration of the
existing FFT and the creation of a smaller 8 x 8 bit butterfly module for the RPR structure. After the successful
completion of this step, implementation of a RPR module with an 8/32 degree was commenced. Ambiguities and
inefficient radiation protection were identified in this implementation. Finally, adopting a new RPR approach and a
higher degree of 14/32, a smooth and correct RPR module was created that could work in real time, and handle data
at a speed of 163MHz. Both TMR and RPR with a degree of 14/32 methods were compared, confirming the RPR’s
advantage in power consumption and in occupied FPGA’s resources.

15. NUMBER OF
PAGES

135

14. SUBJECT TERMS
Reduced Precision Redundancy (RPR), Triple Modular Redundancy (TMR), Field Programmable
Gate Array (FPGA), Fast Fourier Transform (FFT)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

USE OF THE REDUCED PRECISION REDUNDANCY (RPR) METHOD IN A
RADIX4 FFT IMPLEMENTATION

Athanasios Gavros
Lieutenant Junior Grade, Hellenic Navy

Bachelor of Naval Science, Hellenic Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2010

Author: Athanasios Gavros

Approved by: Herschel H. Loomis, Jr.
Thesis Co-Advisor

Alan A. Ross
Thesis Co-Advisor

R. Clark Robertson
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Reduced precision redundancy (RPR), as a new method for improving fault tolerance in

FPGAs, appears promising in replacing triple modular redundancy (TMR) to prevent the

single event effects due to radiation in arithmetic processes. As a test of this approach,

the RPR technique was used to implement a Radix-4 fast Fourier transform (FFT). This

design was implemented in a Xilinx Virtex 2 FPGA in order to find the possible gain in

speed and power as compared to the TMR method.

This thesis deals with a 64-point Radix-4 in-place FFT, based on an improved

FFT algorithm. The whole FFT structure was implemented based on self-designed

modules and by manipulating the embedded Virtex II FPGA’s modules. The point was

to create a fast and small FFT module that could be altered according to specific

application requirements. The implementation of the FFT was successful, managing to

handle data in real time at a speed of 134MHz.

Based on this FFT design, the next challenge was the implementation of TMR and

RPR modules. The first attempt was the TMR structure, implemented by creating three

identical replicas of the FFT and installing a voter per FFT stage. This implementation

was unsuccessful due to space limitations. The next step was the alteration of the

existing FFT and the creation of a smaller 8 x 8 bit butterfly module for the RPR

structure. After the successful completion of this step, implementation of a RPR module

with an 8/32 degree was commenced. Ambiguities and inefficient radiation protection

were identified in this implementation. Finally, adopting a new RPR approach and a

higher degree of 14/32, a smooth and correct RPR module was created that could work in

real time, and handle data at a speed of 163MHz. Both TMR and RPR with a degree of

14/32 methods were compared, confirming the RPR’s advantage in power consumption

and in occupied FPGA’s resources.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVE ..2
B. FFT DESIGN OVERVIEW..2
C. BACKGROUND ..2

1. Space Environment and FPGA...2
2. Fault Tolerance Methods—Redundancy...3

D. ORGANIZATION OF THIS THESIS...4

II. PREVIOUS WORK...5
A. PREVIOUS THESIS ...5

1. Gkikas Thesis ...5
2. Sullivan Thesis..6

B. PREVIOUS PAPERS ..8
1. Application Reports and Notes ...8
2. Papers..8

III. THEORETICAL APPROACH ..11
A. PROBLEM DISCUSSION..11

1. Discrete Fourier Transform..11
2. Fast Fourier Transform ..12

a. Radix-2 Versus Radix-4 Versus Split-Radix13
b. In-Place Versus Constant Geometry Structure......................15

B. CONCEPTUAL DESIGN MODEL ...16
1. 64-Point Radix-4 in-Place DIF..16
2. An Improved Radix-4 DIF FFT Algorithm.....................................19

IV. DESIGN IMPLEMENTATION DETAILS OF FFT ...21
A. DESCRIPTION..21

1. Stage 1-2-3...22
a. Stage Controller ..24
b. RAM...24
c. Compute Factor...24
d. BF Multiplier ..24
e. Multiplexer ..31

2. Main Controller ...31
3. Reversing Last Stage..31

B. IMPLEMENTATION EFFORTS AND RESULTS...................................31
1. Implementing a TMR ..31
2. Implementing a RPR—First Attempt—RPR Degree 8/32.............32

a. RPR Upper and Lower Modules...33
b. Overflow Approach ...34
c. Ambiguity Phenomenon ...35
d. RPR Survey Problems...36

3. Implementing a RPR—Second Attempt—RPR Degree 14/32.......38

 viii

a. RPR Bound Modules ..38
b. Verifying Results ...39

V. RESULTS ...43

VI. CONCLUSIONS AND RECOMMENDATIONS...47
A. SUMMARY ..47
B. RECOMMENDATIONS FOR FUTURE STUDY48

1. Overflow Manipulator...48
2. Implementing a 4 Recursive Butterfly FFT Instead of the 12

Butterfly FFT ...48

APPENDIX A. FFT IMPLEMENTATION...49
A1. FFT MODULE–XILINX SCHEMATIC DESIGN.....................................50
A2. FFT MODULE—XILINX BEHAVIORAL AND STRUCTURAL

DESIGN ..52
A2.1. Main Controller of TMR..52
A2.II. Reversing Bit of Last Stage Module ...53
A2.III. Controller of First Stage Timescale 1ns / 1ps.................................54
A2.IV. RAM..57
A2.V. Multiplexer and Voter of Each Stage...60
A2.VI. Compute Factor ..60
A2.VII. BF’s Multiplier ...65
A2.VIII. Multiplier 32x32 Module...67
A2.IX. BF Multiplier—CSA module ..69
A2.X. BF Multiplier—CLAH module...70

APPENDIX B. TMR IMPLEMENTATION...75
B1. TMR MODULE—XILINX SCHEMATIC DESIGN.................................76
B2. TMR MODULE—XILINX BEHAVIORAL AND STRUCTURAL

DESIGN ..78
B2.I. Multiplexer and Voter of Each Stage..78

APPENDIX C. RPR IMPLEMENTATION ..81
C1. RPR MODULE—XILINX SCHEMATIC DESIGN..................................82
C2. RPR MODULE—XILINX STRUCTURAL AND BEHAVIORAL

DESIGN ..85
C2.I. Radiation Module ..85
C2.II. Multiplexer and Voter of Each Stage...89
C2.III. BF—Delayer ..92
C2.IV. BF——Multiplier..93

APPENDIX D. MATLAB FILE..95
D1. MAIN FILE ..95

LIST OF REFERENCES..115

INITIAL DISTRIBUTION LIST ...117

 ix

LIST OF FIGURES

Figure 1. Radix-2 DIF Butterfly (From [15]) ...13
Figure 2. Radix-4 DIF Butterfly (From [16]) ...14
Figure 3. Split Radix DIF (From [16]) ...14
Figure 4. Radix-2 DIF FFT with in-place input and output (From [15])..............................15
Figure 5. Radix-2 DIF FFT with constant geometry structure (From [15])16
Figure 6. 16-Point Radix-4 DIF FFT Butterfly (From [8])...17
Figure 7. 64-Point Radix-4 DIF FFT ..18
Figure 8. 64-Point Radix-4 in Shape DIF Signed Fixed Point 32Bit FFT—The Upper

Level ..22
Figure 9. 64-Point Radix-4 in Place DIF Signed Fixed Point 32bit FFT—Stages 1&2&3..23
Figure 10. BF Multiplier—Use of Embedded Multipliers—Part126
Figure 11. BF Multiplier—CSA module—Part2..28
Figure 12. BF Multiplier—CLAH Module—Part3 (From [19]) ..29
Figure 13. Multiplier—Overview—Part1 & Part2 & Part3 ...30
Figure 14. Reduced Precision Redundancy Stage Portrayal...34
Figure 15. RPR Shield and 3-Bit Shifting Obstacle ...37
Figure 16. FFT and Radiation Module ...41
Figure 17. TMR Vs RPR Synthesis Results ...44
Figure 18. TMR Vs RPR—XPower Analyzer Comparison ...45
Figure 19. FFT Design—Entirely Layout...50
Figure 20. FFT’s First Stage Layout...51
Figure 21. RAM Structure ..52
Figure 22. TMR’s Entirely Concept Layout. ..76
Figure 23. TMR’s First Stage Layout. ..77
Figure 24. TMR’s BF Module ..78
Figure 25. RPR- Entirely Module Layout...82
Figure 26. RPR Module—Three Stages Layout ...83
Figure 27. RPR—First Stage Layout ..84
Figure 28. RPR—Butterfly ...85

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Characteristics of 64-point Radix-4 FFT ...20
Table 2. Expected Errors of Precision Calculation ..40
Table 3. Errors Expected Due to the Import of Radiation in the Precise Module42
Table 4. Synthesis Results—Comparison between RPR and TMR in a Virtex II

XC2V8000-5FF1152 FPGA ..43
Table 5. TMR Versus RPR—XPower Analyzer Results...44

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Field Programmable Gate Arrays (FPGA) are integrated circuits containing

programmable logic components and interconnectors that are able to be used for the

creation of complex logic functions. They are characterized by the unique ability to be

updated or changed depending on current requirements. One of the main applications for

FPGAs is in the space industry where arrays must be updated or reconfigured without

being physically accessed. Difficulties arise in the use of such devices in the harsh space

environment where guard methods against single event effects (SEE) from radiation are

required.

A simple solution to this problem is the use of the Triple Modular Redundancy

(TMR) method. This is a process that protects the whole FPGA configuration against

SEE, with the compromise of demanding a significant amount of resources. Snodgrass

recognized the problem and introduced, in his PhD dissertation in 2006 [1], a new

method of fault tolerance. This method, referred to as the Reduced Precision

Redundancy (RPR) method, is an alternative way of implementing and protecting the

required design. It can be used only for arithmetic processes and requires fewer

resources than TMR. The use of RPR requires a compromise between capacity demand

and output’s precision, depending on the “degree”—the measure of reduction of precision

—of RPR.

The objective of this thesis was the creation of a fast Fourier transform (FFT)

structure that could be implemented in a FPGA of the Virtex II family, adopting both

methods of redundancy, TMR and RPR, in order to investigate the performance of RPR.

First, a simple 64-point Radix-4 in-place FFT was implemented that could handle fixed-

point two’s complement numbers. This structure was tested with accurate results. Next,

a TMR structure was designed by replicating three identical FFT structures and by

importing a voter into the end of each stage. The design was successful, but the

implementation failed to fit within due to size constraints of the Virtex II FPGA,

revealing the significant demand for resources of the TMR method. The next step was

the design of a RPR structure with a degree of 8/32 – 8 bits reduced precision and 32 bits

 xiv

precise result. The design was successfully implemented, but the protection against

radiation failed due to ambiguities and errors that were not considered at that time.

Taking into consideration the problems from the previous unsuccessful design, a new

RPR structure with a degree of 14/32 was designed and implemented. This

implementation worked correctly and protected the FFT structure efficiently.

Based on the research conducted in this thesis, an alternative RPR method is

suggested, where there is no actual need for generating upper and lower bounds. Instead,

the truncation and duplication of the precise number, in combination with theoretical

boundary calculations, is sufficient. This alteration assists in simplifying the logic and

decreasing the size of the voter.

Finally, both TMR and RPR methods were implemented successfully in a slightly

larger Virtex II demonstrating the advantage of RPR over TMR in resource requirements

and power consumption.

 xv

ACKNOWLEDGMENTS

I would like to express my gratitude and sincere appreciation to Professors

Herschel H. Loomis, Jr. and Alan A. Ross for their guidance, encouragement and support

in the completion of this work.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Modern satellites are capable of handling controls, communications, observation

systems, and on-board payload data processing tasks. The inaccessibility of a satellite

after launch and the need for periodic updates of the satellite’s data handling procedures

create a strong argument for using field programmable gate array (FPGA) instead of

application-specific integrated circuit (ASIC) technologies. The fact that a FPGA can be

reconfigured any time it needs to be is a major advantage and the main reason that they

are preferred in a spacecraft circuit design.

Spacecraft computer systems must be able to operate reliably, despite the harsh

radiation environment. High energy protons from the Van Allen radiation belt, cosmic

rays from outer space, and highly charged ions from solar flares are just a few of the

threats that need to be taken into consideration [2] in spacecraft circuit design. In order

to prevent radiation effects, hardening of the device is a significant priority. But,

continuously decreasing transistor sizes and the simultaneous increase in operating

frequencies are obstacles to our hardening efforts.

Radiation can cause unwanted effects, such as the flipping of a memory cell’s

state in semiconductor devices, better known as soft errors or single event upsets (SEU).

FPGAs are susceptible to errors in both data and architecture configuration caused by

SEU. In order to prevent this faulty behavior, triple modular redundancy (TMR) is

commonly used to ensure reliable operation. However, TMR is very costly in terms of

chip area and power consumption. Current research is focused on introducing new

methods of fault tolerance for space-borne reprogrammable computers. At the Naval

Postgraduate School (NPS) in 2006, a new method of fault tolerance was introduced [1],

referred to as reduced precision redundancy (RPR). RPR applies redundancy only to the

most significant numerical bits of a circuit and in this way significantly decreases the

needed chip area and power consumption over that required for TMR.

 2

In this thesis, a Radix-4 64-point FFT is implemented in a Virtex II XC2V6000

FPGA chip using a Xilinx interface in order to further examine the effectiveness of the

RPR method. The reason for the choice of this chip was its existence in the space-flight

prototype processor, CFTP-2 [3].

A. OBJECTIVE

Reduced precision redundancy (RPR), a new method of fault tolerance in digital

arithmetic processors, appears promising as a technique for replacing triple modular

redundancy (TMR) against single event effects due to radiation. In order to demonstrate

this promise, the RPR technique is used to implement a Radix-4 fast Fourier transform

(FFT). This design is implemented with different degrees of RPR in a Xilinx Virtex II

FPGA in order to find possible improvements in chip area, speed, and power

consumption compared with the TMR method.

B. FFT DESIGN OVERVIEW

The basic design goal is to implement a FFT design based on the RPR concept in

a Virtex2 XC2v6000. This efforts focuses on the creation of one FFT Radix-4 N = 64

point that can handle one 32-bit input signal in every clock period (in real time) and at the

maximum possible frequency, combined with two RPR modules of the same philosophy

with a degree of 8/32 = 0.25.

C. BACKGROUND

1. Space Environment and FPGA

The space environment is harsh and has serious impact on any spacecraft that

orbits, even for a short period of time. Thermal imbalances, erosion or surface damage

are just a few of the threats. In this thesis, efforts to prevent or decrease the impact of a

different threat, space radiation, are examined.

The space radiation environment is encountered by the majority of space missions

and is the result of galactic cosmic rays (GCRs) of particles emitted by solar events and

of particles trapped in the Earth’s radiation belts [2]. GCRs are highly energetic, heavy

 3

protons and ions, reaching energies in excess of 10 GeV/nucleon. The GCR environment

in interplanetary space changes with the phase of the solar cycle. Particles emitted by

solar events are an important contribution to radiation and are correlated with the eleven-

year solar cycle. This is due to the fact that large solar events are more frequent during

solar maxima than during solar minima. Particles trapped in the Earth’s radiation belts,

sometimes called the Van Allen belts, are most significant between the altitudes of

approximately 1,000 km to 32,000 km. These particles consist of electrons, protons and

heavy ions that are trapped in the Earth’s magnetic field. Spacecraft shielding is capable

of protecting against only some of these particles [2].

This radiation and the inefficiency of our shielding can cause unwanted effects on

space-borne circuits, better known as single event effects (SEE). SEE can take many

forms and some of them can be more destructive than others. In this thesis, the non-

destructive SEE, single event upset, known as a soft error is considered. A soft error is

the transient corruption of a single bit of data. Unfortunately, FPGAs are susceptible to

soft errors, in both data and the architecture configuration, both of which are stored in

memory.

2. Fault Tolerance Methods—Redundancy

One way to maximize a system’s fault tolerance is to use triple modular

redundancy (TMR). The basic design of TMR consists of three identical copies of the

operation that is required to be “secure.” The three identical system results are processed

by a voting system to produce a single output. If any one of the three systems fails, the

other two systems can correct and mask the fault. The disadvantage of using TMR is the

high chip area occupation and the increased power consumption [4]. Snodgrass [1]

suggested the concept of a new fault tolerance method, the reduced precision redundancy

(RPR) method that allows a sacrifice in level of precision in an arithmetic calculation, in

return for decreased power and capacity demand. Instead of implementing three identical

copies of a circuit and voting the result, one fully functional copy of the circuit and two

reduced precision copies, that will define the upper and lower limit of the function’s

output, are created. The voter then compares the three values and checks to determine if

 4

the function’s result is within the limits of the reduced precision values or if an error has

occurred. In either case a result can be generated. Depending on where the exact point

of the error is, the result will be a precise or less-precise output calculation.

D. ORGANIZATION OF THIS THESIS

Chapter II, Previous Work, describes all thesis and various previous work on

which this thesis is based.

Chapter III, Theoretical Approach, describes the theoretical background and the

algorithm choices that rising for the design of a FFT.

Chapter IV, Design Implementation Details and Description of the

Implementation Effort, provides a description of the modules and data management

strategies used to develop the FFT design and explains the implementation efforts for

TMR and RPR modules.

Chapter V, Results, contains an analysis of the occupied resources and power

consumption for both TMR and RPR modules.

Chapter VI, Conclusion and Recommendations, contains a summary of the total

effort and recommendations for future work.

 5

II. PREVIOUS WORK

A. PREVIOUS THESIS

This thesis is based on the dissertation of Joshua D. Snodgrass [1] and on two

theses, from Nikolaos Gkikas [5] and Margaret A. Sullivan [4], respectively. These

works reveal valuable information and results that are combined in the design efforts

examined in this thesis.

1. Gkikas Thesis

Gkikas describes the design of a Radix-4 FFT for wireless communications

(wireless local area networks (LANs)) [5]. He compares different algorithm structures,

the complexity, memory needs, data flow and controller complexity of each of them,

searching for the most suitable algorithm for his intended application.

First, he analyzes the difference between the decimation Fourier transform (DFT)

and FFT, Radix-2, Radix-4 and Split-Radix algorithms. Based on theoretical approaches,

he reports that the FFT provides a faster solution than the DFT. Comparing Radix-2 to

Radix-4, he concludes that Radix-4 requires fewer multiplications, so it is the preferred

solution. Investigating the Split-Radix algorithm, he calculates that it requires even fewer

multiplications than the Radix-4, but it has the disadvantage of greater complexity.

Continuing his investigation, he states some useful information about the decimation-in-

time-frequency algorithm (DITF), the fast Harley transform and the quick Fourier

transform. His final conclusion for his application is the adoption of the Radix-4 FFT.

Secondly, he analyzes the structure of a Radix-4, 64-point, in-place decimation in-

frequency (DIF) FFT, identifying its major modules. He explains the basic principles of

each module and writes a brief note about the interconnections and the possible

controlling algorithms that he uses in his C++ implementation. His design contains four

major components. The first component is a computer factor component that generates

the needed factors. The second component is comprised of two 64-sample ROMs that

store the computed phase factors and the twiddle factors. The third component is a

 6

multiply accumulator that consists of one butterfly (BF) machine, one adder and two

registers, to compute the real or imagery part of the stage’s output. Finally, the fourth

component is a controller that synchronizes all of the components.

In the third part of his thesis, Gkikas examines the structure of the butterfly

machine, and based on the theory of the improved Radix-4 algorithm, derived from the

Cooley and Tukey algorithm [6], he suggests the use of the factor terms. This structure is

helpful because a minor modification to the factor’s equations, while leaving the rest of

the design intact, provides an inverse FFT (iFFT) algorithm module. Moreover, the use

of factors improves data reusability and decreases the number of required computations.

He also studies the phase factors and the correct use of them concerning this structure.

Finally, he examines three different structures of FFT, based on the number of

butterfly machines that each of them includes. He first considers a 48-butterfly FFT,

where each of the three stages has 16 butterflies and that each butterfly is used only once

in every 64-point block of data. After that he examines the use of a 16-butterfly FFT,

where all three stages use the same 16 butterflies, so that each butterfly is used three

times, once per stage. Then, he explores the use of a 4-butterfly FFT, where each

butterfly is used 12 times, four times per stage, for three stages.

2. Sullivan Thesis

Based on Snodgrass’ dissertation [1], Sullivan illustrates the application of RPR

as a new method of fault tolerance in FPGAs against single event effects [4]. She

examines the use of different degrees of RPR depending on the arithmetic operation and

compares the impact of implementation of those degrees to area consumption.

Specifically, she categorizes the problems that are suitable for RPR implementation into

two major divisions. These categories depend on the required computation, and are

addition/subtraction or multiplication/division. Later she investigates the possibilities of

implementing RPR in a FFT algorithm.

For each category, she describes the mathematical relationships, and depending

on the two operands, she defines each case. She determines the lower and upper bounds,

and at the same time, points to special cases that demand unique handling in order to

 7

avoid possible errors or overflows. In a similar manner, she designs a RPR voter for each

task, acknowledging the differences between addition voter and multiplication voter, and

provides useful tips about the necessary signals, functions behavior and checking

comparators of the module.

In the final portion of her research on the arithmetic operations, she comes to the

conclusion that the use of RPR instead of TMR in the addition/subtraction operation does

not guarantee less area occupancy in every case. After checking the results of FPGA’s

area comparison, she confirms that “… in order for RPR to be a more desirable fault-

tolerance approach than TMR for a simple operation like addition or subtraction, the

degree of RPR must be significantly less than 0.5 - and that for both the adder and the

voter in a RPR addition process to be smaller than the analogous TMR modules the

degree of RPR must be less than 0.25 [4].”

Moreover, she concludes that for the multiplication operation “… a RPR

multiplication module requires 1/3 to 1/2 the FPGA slices of a TMR multiplication

module depending on the degree of RPR [4].” However, she notes that the size of the

multiplication RPR voter is extremely large when compared to the TMR voter module, a

drawback that should not be underestimated. Another crucial question that she tries to

answer is the dilemma of whether to test intermediate results or just the final result for

error. She points out, “Any benefit of testing intermediate results in RPR processes must

be considered against the additional space it requires [4].”

Later, she explains the basics of a FFT algorithm and reveals thoughts about

different ways of implementing a RPR voter in a FFT. According to those thoughts,

“…we may include one or more voters on the final or intermediate results [4].”

Therefore, there are many choices; for example, we can implement a voter after each

multiplication, or after each complex product or maybe at the end of each stage. She

predicts that using an 8/32 degree of RPR in a FFT butterfly operation instead of a TMR

will save 66 percent of occupied FPGA slices. Finally, she concludes that using a RPR

voter for a few major points within the system will keep the area cost of the FPGA low

compared to the cost of TMR.

 8

B. PREVIOUS PAPERS

Various papers, application reports and notes were also considered in this thesis.

The following notes are not an abstract from these reports. Only the ideas and thoughts

that were considered useful for the design are discussed.

1. Application Reports and Notes

In [7], Wu describes the implementation of a Radix-4 DIF FFT using the Texas

instrument TMS320C80 digital signal processor (DSP). Although the report is dated, it

reveals basic FFT implementation principles in a parallel processor and points out

possible errors and/or hazards due to data overflow. In [8], Delphin of ST Industries

describes the implementation of the Radix-4 FFT Algorithm using the ST120 DSP.

There she explains the basic structure of a FFT Radix-4 and a new algorithm that is

derived from the Cooley and Tukey algorithm [6]. She discusses the correct order and

the characteristics of each stage BF’s factors and twiddle numbers. In order to save

memory resources, she chooses the “in-place” FFT structure, but she notices the need for

each stage’s output digit reversing procedure. Finally, she provides a C++ example

program that reveals the structure of specific parts of her design.

2. Papers

There are three relevant papers that discuss the design and implementation

improvements of a Radix-4 FFT algorithm in a FPGA. Each of them provides important

advice concerning the structure of the design considered in this thesis. In the first paper

[9], Sun, Liu and Ji give a detailed description of the FFT’s memory structure, RAM

storage capabilities and restrictions of RAM used in a FPGA. They consider a new way

of handling data addresses to allow manipulation of four input and output data streams,

while at the same time, bypassing the limitations of modern two-port RAM hardware. In

the second paper [10], Bouguezel discusses the profits of using the improved Radix-4

FFT algorithm in comparison to the Cooley-Tukey FFT algorithm [6]. In the third paper

[11], Chao, Qin, Yingke and Chengde work on the design of a high performance FFT

processor, based on a FPGA. They introduce two important ideas for the optimization of

the FPGA, ideas that could be implemented in future iterations of the design presented in

 9

this thesis. The first idea is the lifting scheme, which is a transform that reduces the

number of real multiplications in a BF from four to three. While of benefit, note that it

also increases the number of real additions from two to three. The second idea is the use

of an adaptive overflow calculation. This novel approach ensures that no overflow takes

place over the entire calculation. This is performed without limiting the data path width

or decreasing the efficiency of the BF.

With important information from previous theses, application notes and papers

considered, the theoretical background required for the creation of the FFT design is

discussed in Chapter III.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. THEORETICAL APPROACH

A. PROBLEM DISCUSSION

In order to successfully implement a FFT in a FPGA, many aspects must be

considered and wise decisions must be made concerning different algorithms, geometries

and decimations. Each approach has advantages and disadvantages but the most suitable

one must be selected. The goal is the implementation of a 64-point FFT that can handle

data in real time, while occupying as few resources as possible. Before discussion of

design optimization, where the three basic categories of decimations, geometries and

algorithms must be considered, it is useful to describe the discrete Fourier transform.

1. Discrete Fourier Transform

The discrete Fourier transform (DFT) plays an important role in many

applications of digital signal processing. The reason for its importance is the presence of

efficient algorithms for computing the DFT.

The DFT sequence X k of N complex-valued numbers, given a sequence of

data {x (n)}of length N, is computed as:

1

0

() ()
N

kn
N

n

X k x n W

 0 1k N ,

where:
2 /j N

NW e .

1

0

1
() ()

N
nk

N
k

x n X k W
N

 0 1n N .

For each value of k, N complex multiplications (4N real multiplications) and N-1

complex additions (4N-2 real additions) are required. This indicates that in order to

compute all N values of the DFT, 2N complex multiplications and 2N N complex

additions are required.

 12

Unfortunately, direct computation of the DFT is inefficient due to the fact that

“…it does not exploit the symmetry and periodicity properties of the phase factor NW

[12].” These properties are summarized as:

 Symmetry property: /2k N k
N NW W

 Periodicity property: k N k
N NW W

The solution to this problem is the decomposition of the N-point DFT into

successively smaller DFTs. This new approach, named divide-and-conquer, made the

computation of the DFT more efficient, leading to fast Fourier transforms (FFT)

algorithms.

2. Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient algorithm that uses a reduced

number of arithmetic operations as compared to DFT, “… eliminating redundancies that

result from adding certain data sequence values after they have been multiplied by the

same factors of fixed complex constants during the evaluation of different DFT transform

coefficients. The efficiency is achieved at the expense of reordering the data sequence,

but the additional expense is generally small compared to the reduction in multiplications

and additions.” [13]

In order to use an efficient FFT algorithm based on the divide-and-conquer

approach, the number of data points, N, is highly composite, meaning N can be described

as 1 2 3* * *...* uN r r r r , where { jr } are prime.

In the case where 1 2 3 ... ur r r r r , then
uN r and the number r is called

the radix of the FFT algorithm. Each FFT radix-r algorithm can be categorized into two

groups, depending on the decimation chosen. The two groups are the decimation in-time

(DIT) algorithms, where time samples are computed in alternating groups, and the

decimation in-frequency (DIF) algorithms, where frequency samples are computed,

separately, in alternating groups.

 13

a. Radix-2 Versus Radix-4 Versus Split-Radix

When comparing the three major FFT algorithms, Radix-2 DIF, Radix-4

DIF and Split-Radix DIF, the following conclusions can be made [5], [14]:

The Radix-2 DIF algorithm (Figure 1) significantly decreases the number

of complex multiplies compared to the DFT from 2N to 2(/ 2) logN N and complex

additions from (1)N N to 2logN N . It is a very popular algorithm due to the symmetry

and periodicity properties of its twiddle factors.

Figure 1. Radix-2 DIF Butterfly (From [15])

The Radix-4 DIF algorithm (Figure 2) yields an even greater decrease in

the number of complex multiplies as compared to the Radix-2 DIF. The reduction is

from 2(/ 2) logN N to 2(3 / 8) logN N . Therefore, the Radix-4 DIF requires 75 percent

as many multiplies as Radix-2 DIF and the same number of additions. It also

demonstrates the same symmetry and periodicity properties of its twiddle factors.

 14

Figure 2. Radix-4 DIF Butterfly (From [16])

The Split-Radix DIF (Figure 3) is computationally superior to both the

Radix-2 and Radix-4 algorithms when considering the number of required multiplications

and additions. However, this algorithm has the disadvantage of structure irregularity, a

disadvantage that prohibits its use in an implementation design effort [12]. So, after

comparing these three popular algorithms, the Radix-4 DIF algorithm is selected for the

design considered in this thesis.

Figure 3. Split Radix DIF (From [16])

 15

b. In-Place Versus Constant Geometry Structure

The term “in-place” (Figure 4) refers to the fact that each time a butterfly

is computed, the correct set of data is read from memory and the products from the

butterfly computation are written back into the same set of places in memory [17]. The

advantage of the “in place” is the fact that the set of data that are needed each time is the

same set of data that are produced by the butterfly. This means that data can be

overwritten, in order to minimize memory requirements. This is very useful in

implementing a FFT in an old FPGA, where the goal is using the least amount of required

memory, vice achieving real time signal processing.

The term “constant geometry” (Figure 5) indicates that the connections

between memory slots are the same in each stage. The advantage of this structure is the

fact that it is less complicated than the “in-place” structure, reducing hardware size.

Obviously, “constant geometry” seems more attractive for a highly parallel hardware

implementation [18], but the potential of the “in-place” in an old FPGA results in its

preference for the thesis design.

Figure 4. Radix-2 DIF FFT with in-place input and output (From [15])

 16

Figure 5. Radix-2 DIF FFT with constant geometry structure (From [15])

B. CONCEPTUAL DESIGN MODEL

In order to evaluate RPR concepts in a FFT, many aspects are considered in

choosing an implementation. The final choice for this thesis is a 64-point Radix-4 in-

place DIF FFT implementation in the Virtex-2 XC2V6000 FPGA. The following section

provides a brief overview of the theoretical approach to this thesis design.

1. 64-Point Radix-4 in-Place DIF

The Radix-4 DIF FFT divides the 64-point DFT into four 16-point DFTs, then

into 16 four-point DFTs [7-8]. The butterfly of a Radix-4 consists of four inputs and four

outputs, as shown below:

/4 1 /2 1 3 /4 1 1

0 /4 /2 3 /4

() () () () ()
N N N N

kn kn kn kn
N N N N

n N N N

X k x n W x n W x n W x n W

/4 1 3
4 2 4

0

[() () () (3)]
4 2 4

N N NN k k k kn
N N N N

n

N N N
x n x n W x n W x n W W

,

where: 4 ()
N

k k
NW j

 17

 2 (1)
N

k k
NW

3

4 ()
N

k k
NW j .

Combining terms yields the following equation:

/4 1

0

() [() () () (1) () () (3)]
4 2 4

N
k k k kn

N
n

N N N
X k x n j x n x n j x n W

.

To get four-point DFT decomposition, we decompose again as:

/4 1

0

/4 1
(1)

0

/4 1
(2)

0

/4 1

0

() [() () () (3)]
4 2 4

(1) [() () () (3)]
4 2 4

(2) [() () () (3)]
4 2 4

(3) [() () ()
4 2

N
kn

N
n

N
k n

N
n

N
k n

N
n

N

n

N N N
X k x n x n x n x n W

N N N
X k x n jx n x n jx n W

N N N
X k x n x n x n x n W

N N
X k x n jx n x n

 (3)(3)]
4

k n
N

N
jx n W

.

This is called the butterfly and is repeated for all four-point bundles as shown in

Figures 6 and 7.

Figure 6. 16-Point Radix-4 DIF FFT Butterfly (From [8])

 18

Figure 7. 64-Point Radix-4 DIF FFT

 19

2. An Improved Radix-4 DIF FFT Algorithm

The improved Radix-4 DIF FFT algorithm is derived from the following

equations.

The basic equations of the FFT’s butterfly are:

0

2

3

[]

[]

[]

[]

N

n
N

n
N

n
N

A a b c d W

B a jb c jd W

C a b c d W

D a jb c jd W

 ,

where:

r im

r im

r im

r im

a a ja

b b jb

c c jc

d d jd

 ,

and _ _
k k k

N N r N imW W W
.

Transforming the upper equations yields:

0

2

3

[() () () ()]

[() () () ()]

[() () () ()]

[() () () ()]

r im r im r im r im N

n
r im r im r im r im N

n
r im r im r im r im N

n
r im r im r im r im N

A a ja b jb c jc d jd W

B a ja j b jb c jc j d jd W

C a ja b jb c jc d jd W

D a ja j b jb c jc j d jd W

 .

For the computation of the real and imaginary part of the first output of the

butterfly, only the butterfly’s inputs are added, without multiplying any phase factors.

 r r r r r

im im im im im

A a b c d

A a b c d

 (III.1)

The real and imaginary parts of the B, C, D outputs produce six common factors:

 20

1

2

3

4

5

6

r im r im

r r r r

r im r im

im r im r

im im im im

im r im r

factor a b c d

factor a b c d

factor a b c d

factor a b c d

factor a b c d

factor a b c d

 (III.2)

Expressing the B, C, D outputs of the butterfly in factor terms:

1 _ 4 _

4 _ 1 _

2 2
2 _ 5 _

2 2
5 _ 2 _

3 3
3 _ 6 _

3 3
6 _ 3 _

* *

* *

* *

* *

* *

* *

n n
r N r N im

n n
im N r N im

n n
r N r N im

n n
im N r N im

n n
r N r N im

n n
im N r N im

B factor W factor W

B factor W factor W

C factor W factor W

C factor W factor W

D factor W factor W

D factor W factor W

 (III.3)

where: _

_

cos(2 /)

sin(2 /)

kn
N r

kn
N im

W kn N

W kn N

based on the reference of Table 1.

Table 1. Characteristics of 64-point Radix-4 FFT

Stage 1 2 3

Butterflies per group 1 4 16

Butterfly group 16 4 1

Twiddle Factor Exp.

Leg1

Leg2

Leg3

Leg4

0

n

2n

3n

n=0 to 15

0

4n

8n

12n

n=0 to 3

0

16n

32n

48n

n=0

Based on the theoretical background discussed above, it is clear that the best

design implementation for this application is a 64-point Radix-4 in place FFT, which can

handle 32-bit fixed point signals in real time.

 21

IV. DESIGN IMPLEMENTATION DETAILS OF FFT

This chapter focuses on the design implementation of the FFT. The objective is

to create a FFT that contains only modules, based on this research, designed in a Xilinx

environment. This implementation is for a Virtex II FPGA XC2V-6000-6bf957.

A. DESCRIPTION

The FFT design contains three identical stage modules, one main controller and a

last-stage reversing module, as shown in Figure 8. It receives as inputs, a 32-bit real

number and a 32-bit imaginary number, both of which are fixed-point, normalized, two’s

complement numbers. It produces as outputs, a 32-bit real number and a 32-bit

imaginary number. The detailed FFT design is included in Appendix A. According to

analysis conducted in this thesis and based on an application report from Cheng [18],

there is the possibility of a 3-bit overflow per stage, meaning a 9-bit overflow for the

entire FFT. In order to avoid overflow issues, a simple solution was chosen. Input

values were restricted to values less than 2-9.

 22

Figure 8. 64-Point Radix-4 in Shape DIF Signed Fixed Point 32Bit FFT—The Upper
Level

1. Stage 1-2-3

All three stages are constructed identically, are pipelined, and their latency is 85

clock cycles per stage. These three stages are depicted in Figure 9. They include a stage

controller, a RAM, a compute factor, a BF multiplier and a multiplexer module. The

 23

stage controller generates addresses, the RAM receives those addresses and the input

signals and sends the output signals to the compute factor. The compute factor computes

the factors and sends them to the BF multiplier or to the multiplexer. The BF multiplier

performs the necessary multiplications and sends the data to the multiplexer. The

multiplexer chooses between incoming data from the compute factor or from the BF

multiplexer.

Figure 9. 64-Point Radix-4 in Place DIF Signed Fixed Point 32bit FFT—Stages 1&2&3

 24

a. Stage Controller

The stage controller receives three and exports four signals. The stage

controller of each stage waits for the write enable (WE) signal of the main controller.

From this time on, it enters into a continuous process of creating input and output

addresses for RAM, based on the algorithm depicted in Figure 7. It also generates the

addresses for the ROM’s twiddle factors and the switch command for the multiplexer.

b. RAM

The RAM module contains a ROM memory with the needed twiddle

factors and two 128-point, 32-bit RAM from Xilinx CORE Generator tool. The RAM is

the only part of the design that is made with the CORE Generator. The RAM receives 3

addresses, one for the incoming input signals, one for the required output signal and one

for the required twiddle factors. Each of the real and imaginary input signals are stored

in one half of the RAM and are exported only when the complete 64-point signals are

collected. The RAM module exports four signals, the real and imaginary signal and the

real and imaginary twiddle factor. Note that the ROM’s stored twiddle factors are not

rounded.

c. Compute Factor

The compute factor has four inputs and five outputs. It needs four pairs of

signals in order to compute the proper factors and starts the procedure after commanded

by the main controller. It computes three pairs of factors that are sent to the butterfly as

demonstrated in Equation (III.2) and a pair of signals that are ready for the next stage as

demonstrated in Equation (III.1). This pair of signals bypasses the BF multiplier and

goes directly to the multiplexer.

d. BF Multiplier

The BF multiplier is the most complex module of the design. It receives 7

inputs, among them a pair of input factors from the compute factor and a pair of twiddle

factors from RAM. It outputs the real and imaginary part of the computed signal.

 25

The aim is to compute the parts of Equation III.3. This is demonstrated by

the following computation:

1 _ 4 _

4 _ 1 _

* *

* *

n n
r N r N im

n n
im N r N im

B factor W factor W

B factor W factor W

 (IV.1)

Thus, four multiplies and two additions are required. For each multiply,

the Virtex II embedded pipelined multiplier, MULT18x18S, is used. This choice was

made to ensure maximum possible speed for our pipelined FFT. This was based on the

fact that the embedded multipliers are probably faster than any behavioral multiplier that

could be designed for this thesis work. The disadvantage of this choice is the limit bit

number of each multiplier. The Virtex II embedded multiplier can handle 18-bit signed

two’s complement numbers and outputs a 36-bit result. However, the input signals in this

design are 32-bit long. This requires the use of four embedded multipliers for each

multiplication. To illustrate, computation of the first product, 1 _* n
N rfactor W is shown in

Figure 10:

 26

0A1A

0B1B

0 0A B

0 1A B

1 0A B

1 1B A

0 0A B1 1B A

0 1A B

1 0A B

Figure 10. BF Multiplier—Use of Embedded Multipliers—Part1

Figure 10 clarifies the situation. It can be observed that after the import of

the two 32-bit long signals, a factor and a twiddle factor, four different outputs are

received from the embedded multipliers. Next, the signal is subject to the concatenation

 27

or addition of bits in order to secure the correct multiplication of the signed fixed point

numbers. Finally, in the third stage three 64-bit long signals are received.

At the fourth stage, those three signals are sent to the carry save adders

module where the number of the desired signals is decreased from three to two. This is

depicted in Figure 11. At the end of the fourth stage, two 64-bit long signals are

available for import to the carry look ahead adder module. This module has a structure

similar to that depicted in Figure 12. The carry look ahead adder adds the two 64-bit

numbers and outputs the product that is being concatenated. The concatenation is based

on the fact that although two 32-bit fixed point signals (with 30-bit fractional number) are

imported, 36-bit fixed point numbers (with 30-bit fractional number) are being

multiplied.

 28

Figure 11. BF Multiplier—CSA module—Part2

 29

Figure 12. BF Multiplier—CLAH Module—Part3 (From [19])

So far, only one product of Equation IV.1 has been computed. However,

four identical designs of the structure, which is shown in Figure 13, are used to compute

the four products of Equation IV.1. Note that during the concatenation procedure, no

rounding occurs.

 30

* kn
Nfactor W

kn
NW

factor

BF

Figure 13. Multiplier—Overview—Part1 & Part2 & Part3

 31

e. Multiplexer

The multiplexer receives a pair of input signals from the BF multiplier and

a pair of signals directly from the compute factor module. The stage controller

manipulates the multiplexer and determines which of the two pairs are going to be sent to

the next stage.

2. Main Controller

The main controller is the module that manipulates the entire design by managing

the controllers of each stage. It contains a reset command that restarts the entire system

and two pairs of signals that awake on time the stage controllers and the compute factors

of each stage.

3. Reversing Last Stage

The reversing last stage module generates the output address of the output signals.

In order to avoid using another RAM for storing the signals in random order and

outputting then in an arithmetic order, the preference is to export them in the in-place

random order and indicate the correct order by using an address monitor.

B. IMPLEMENTATION EFFORTS AND RESULTS

In order to investigate the use of the RPR module it must first be compared to a

TMR module that works under the same initial conditions. Therefore, a TMR 64-point

Radix-4 in place DIF was designed and then implemented in the Virtex-2 XC2v6000

FPGA. Note that the voter in both cases (TMR and RPR) must be in the same position.

In any other configuration a comparison would be ineffective.

1. Implementing a TMR

The design of a TMR is a simple process when compared to the design of a RPR.

It is necessary to choose the frequency of the check points in the FFT and evaluate the

values of the three identical modules through a small voter. Then the results are verified,

with the expectation that at least two of the three values will be identical. In this manner,

a FPGA is protected from unwanted space radiation.

 32

As the frequency of the check points increases, the protection effectiveness

increases. But, the increased use of voters raises the capacity demand of the design. A

good compromise position for voters is to use one voter per FFT stage. The practical

implication is that only three voters are required for a 64-point Radix-4 FFT.

At the conclusion of the implementation effort, a successful 64-point Radix-4 in-

place DIF in a Virtex-2 XC2v6000 FPGA was designed and implemented. The entire

design is included in Appendix B. The resources that were used at this time were much

less that 12 percent of the slice resources of the FPGA, except from one, the embedded

18 x 18 pipelined multipliers. Exactly 3 x 4 x 4 = 48 embedded multipliers were required

from the total of 144 embedded multipliers available in the XC2v6000 FPGA. Based on

calculation, if the goal is to create a TMR, three times the number of embedded

multipliers is required in the primary design. Therefore, less than 36 percent of the

FPGA’s slices and 3 x 48 = 144 embedded multipliers should be required. Thus, the

entire amount of available embedded multipliers was required for this design.

At this point all indications were positive and the design of the TMR was

designed. After successfully synthesizing and simulating the design, an attempt was

made to implement it in the FPGA. However, it was discovered that the FFT could not

be implemented in the FPGA. The reason was based on the demand of the 6-block RAM

of the module for six empty adjacent embedded multipliers. The embedded RAMs and

multipliers were sharing the same routing resources in the Virtex II FPGA. Thus, the

program required 144 + 6 = 150 multipliers or 104 percent of the available resources and

the implementation effort failed. Nevertheless, in order to compare the TMR and RPR

source and power requirements, an implementation of both modules was attempted on the

larger Virtex II XC2V8000 FPGA and is discussed in the next Chapter V.

2. Implementing a RPR—First Attempt—RPR Degree 8/32

Based on the previous concepts, a RPR module was created using, as its core, the

primary design, with RPR voters embedded in the end of each stage. This design

consisted of one precise module unit and two smaller average precision module units.

The precise module unit was identical to the primary design module and handled 32-bit

 33

real and imaginary inputs, while outputting 32-bit real and imaginary results. The

average precise module units were distinct in the upper and lower bound units, in that

each of them defined the upper and lower limits of the precise module.

a. RPR Upper and Lower Modules

The upper and lower average precision modules were almost identical.

They truncated the 32-bit real and imaginary input into 8-bit numbers. In the upper

module, the truncated number was increased by one bit on the least significant bit (LSB).

The 8-bit number passed through the modified compute factor module and entered the

modified BF multiplier. Inside the BF multiplier, due to the need for an 8 x 8 bit

multiplier instead of the 32 x 32 bit precise module’s multiplier, a single 18 x 18S

embedded multiplier was used instead of four. There was no need for CSA or CLAH and

the result of the multiplication occurred sooner than expected from the precise module

unit. In order to keep the program synchronized, a delay was inserted after the 8 x 8 BF

multiplier to equalize the latency, as depicted in Figure 14.

 34

Figure 14. Reduced Precision Redundancy Stage Portrayal

b. Overflow Approach

In the primary design of the FFT, the overflow problem was recognized

and the simplest solution was implemented. Therefore, the input was restricted to

 35

normalized signals with values less than 92 . This secured the design from possible

overflow events. In the first attempt at implementing RPR, a different approach was

elected. Based on Cheng’s work, “Autoscaling Radix-4 FFT for TMS320C6000” [20], a

3-bit shifting per stage approach was adopted in order to avoid overflow issues. The

specific implementation was the adoption of 3-bit shifting in the input of each RAM’s

stage.

c. Ambiguity Phenomenon

In the design of the RPR modules, the upper bound is discriminated from

the lower bound modules by adding one bit in the LSB of the truncated 8-bit number.

This action directs us to the following equations:

Pr

Pr

Pr

Pr

Lower ecise Upper

Lower ecise Upper

Lower ecise Upper

Lower ecise Upper

A A A

B B B

C C C

D D D

Therefore, using the following equations:

Examplefactor A B C D

1 2* *Example N Example NReal factor W real factor W image
,

yields the following results for the upper, lower, and precise modules:

Pr Pr Pr Pr Pr

Lower

ecise

Upper

Example Lower Lower Lower Lower

Example ecise ecise ecise ecise

Example Upper Upper Upper Upper

factor A B C D

factor A B C D

factor A B C D

But, these outcomes lead to the following ambiguity:

Pr
? ?

Lower ecise UpperExample Example Examplefactor factor factor

 36

A solution to this problem is the creation of a unified upper and lower

bound module where each equation loads upper or lower values depending on the sign.

Pr Pr Pr Pr Pr

Lower

ecise

Upper

Example Lower Lower Upper Upper

Example ecise ecise ecise ecise

Example Upper Upper Lower Lower

factor A B C D

factor A B C D

factor A B C D

And so:

PrLower ecise UpperExample Example Examplefactor factor factor

d. RPR Survey Problems

Incorporating 3-bit shifting in each stage of the FFT introduces a total of

9-bit shifting at the final output. If 8-bit RPR shield (8/32 degree) is obtained, it is

concluded that in a non-overflow case, that RPR is incapable of securing the precise

module as illustrated in the following equations. Figure 15 makes clear the fact that in a

non-overflow case, the RPR cannot sufficiently protect the third stage FFT.

9

6

3 _ _ Pr _ (_) 2

3 _ _ _ 2

rd Stage ecise Output not overflow

rd Stage RPR Shield

 37

Figure 15. RPR Shield and 3-Bit Shifting Obstacle

 38

There are two possible solutions to this problem. Either a program must be

created that recognizes and manipulates the possible overflow cases by shifting the input

data by the appropriate amount of bits only when it is desired, or the degree of the RPR

must be increased. In the first situation, the concept of an intelligent overflow

manipulator is most desirable in order to preserve the 8/32 degree of the RPR. However,

this manipulator will increase the complexity of the design due to the need for marking

and shielding of the shifted bit amount throughout the entire FFT structure. In the second

case, an increase of the RPR degree is not desirable, but seems rather attractive at this

point because it minimizes alteration of the primary module.

3. Implementing a RPR—Second Attempt—RPR Degree 14/32

Taking into consideration the ambiguities and errors from the previous

implementation, a RPR module was created, using the primary design as its core, with

RPR voters embedded at the end of each stage. This design is included in Appendix C

and consists of one precise module unit and two smaller low precision module units. The

precise module unit is essentially identical to the previous design module (IV.B.2) and

handles 32-bit real and imaginary inputs, while outputting 32-bit real and imaginary

results. In this case, the only difference is that the bound module units are identical and

not distinct into upper and lower bound units.

a. RPR Bound Modules

The RPR bound module truncates the 32-bit real and imaginary input into

a 14-bit number. The 14-bit number passes through the modified compute factor module

and enters the alternated BF multiplier. Inside the BF multiplier, due to the need for a 14

x 14 bit multiplier instead of the 32 x 32 bit precise module’s multiplier, only one 18 x

18S embedded multiplier was used instead of four. There was no need for CSA or

CLAH and the result of the multiplication occurred sooner than expected from the precise

module unit. In order to keep the program synchronized, a delayer was used after the 14

x 14 BF multiplier. The major difference between the first and the second RPR

implementation was the altered approach of the RPR function. Instead of using an upper

and lower bound, two identical bounds were used that handle the truncated 14-bit value

 39

of the 32-bit input. At the end of each stage, the voter inspects the duplicate truncated

values and proceeds to a simple bit by bit comparison. If the values are identical, then

the voter computes the expected upper and lower limits based on the truncated 14-bit

output and on the theoretical expected errors as shown in Equation IV.3.

Pr Pr Pr Pr Precise ecise ecise ecise ecisefactor A B C D

Trunc Trunc Trunc Trunc Truncfactor A B C D

_ (1' 1) (1' 1) 2' 10Trunc Up Trunc Trunc Trunc Truncfactor A b B b C D b

_ (1' 1) (1' 1) 2' 10Trunc Lo Trunc Trunc Trunc Truncfactor A B C b D b b

In the worst possible case,

Pr2 '10 2 '10eciseb factor b (IV.2)

Using the same method,

Pr Pr _Pr Pr _Pr* *ecise ecise N ecise ecise N eciseReal factor W real factor W image

_ _* *Trunc Trunc N Trunc Trunc N TruncReal factor W real factor W image

Trying to compute the worst possible case, (IV.2)*1 + (IV.2)*1:

Pr3' 100 Re 3' 100eciseb al b (IV.3)

The voter compares the precise value to the expected upper and lower bounds and

decides to choose either the precise value or the average (truncated) value.

b. Verifying Results

In order to verify the truth of the outputs of the implemented FFT

structure, a MATLAB FFT simulation file was created. This file was used to compare

the output forms of the three different sub-programs. The first subprogram was actually

the built-in MATLAB FFT, the second was a clone of the Verilog design in the

MATLAB environment, and the third was a MATLAB translator for the implemented

 40

FFT results. Since MATLAB usually handles 64-bit numbers and due to the decision for

3-bit shifting of the input in every stage of the FFT, a possible error was identified in the

precise calculation of the FFT between MATLAB’s calculated outputs and Verilog’s

translated outputs. These expected errors are tabulated in Table 2.

Table 2. Expected Errors of Precision Calculation

The purpose of the entire design was the testing of the implemented FFT

in a radiation environment. Prior to this, testing was conducted via simulation of possible

radiation effects. For this reason, a radiation module (Figure 16) was imported into the

FFT design that was capable of introducing error bits at the beginning of each stage, prior

to the butterfly calculations.

FFTs Outputs Expected Error
Output of the 1st Stage 252
Output of the 2nd Stage 222
Output of the 3rd Stage 192

 41

Figure 16. FFT and Radiation Module

The radiation module allows great flexibility in the introduction of error

bits, giving the ability to decide in which stage, in which module (one of the truncated

RPR or the precise value) and for how long this “form” of radiation lasts. Errors

 42

introduced in the first stage have less impact on the precision of the average RPR in

contrast to errors introduced in the last stage as shown in Table 3, again due to the three-

bit shifting decision.

Table 3. Errors Expected Due to the Import of Radiation in the Precise Module

In this section, the implementation efforts of three different modules,

TMR, RPR with 8/32 degree, and RPR with 14/32 degree were discussed. In the next

chapter, the results analysis will be covered based on these designs.

Radiation introduced in the precise module Expected Error
Radiation introduced in the 1st stage 72
Radiation introduced in the 2nd stage 42
Radiation introduced in the 3rd stage 12

 43

V. RESULTS

The efforts for implementing a TMR version of the FFT in the Virtex II

XC2V6000 were fruitless, forcing a revision to the plan. In order to compare TMR and

RPR modules, the same FPGA chip had to be used, so it was essential to use a larger

FPGA of the same family. The next larger, available Virtex II FPGA, the XC2V8000,

was used.

First, the synthesis reports for the RPR and TMR modules were compared, as

indicated in Table 4, where a significant difference in occupied resources is noted. RPR

needs 74 percent of the slices that TMR uses, 76 percent of the slice flip flops, 68 percent

of the four-input LUTs and 50 percent of embedded multipliers that the TMR uses. In

Figure 17, the differences identified in the synthesis reports are presented.

Table 4. Synthesis Results—Comparison between RPR and TMR in a Virtex II
XC2V8000-5FF1152 FPGA

Virtex II
XC2V8000

TMR module TMR’s
occupancy %

RPR module RPR’s
occupancy %

Slices 11028 23% 8236 17%
Slice Flip
Flops

18525 19% 14067 15%

4 input LUTs 17985 19% 12255 13%
BRAMs 6 3% 6 3%
MULT18x18S 144 85% 72 42%

 44

Figure 17. TMR Vs RPR Synthesis Results

Secondly, the Xilinx’s XPower Analyzer was used to investigate the power that

each of the modules required for operation. When the outcomes from both cases were

compared, an interesting conclusion resulted. Although both systems needed the same

amount of quiescent power, RPR required 19 percent less dynamic power than TMR.

These results are tabulated in Table 5 and depicted in Figure 18.

Table 5. TMR Versus RPR—XPower Analyzer Results

Virtex II
XC2V8000

TMR module RPR module

Total Quiescent
Power

0.13785 W 0.13785 W

Total Dynamic
Power

0.17408 W 0.14079 W

Total Power 0.31193 W 0.27864 W
Junction
Temperature

28.3 degrees C 27.9 degrees C

 45

Figure 18. TMR Vs RPR—XPower Analyzer Comparison

After inspecting the synthesis and power reports from Xilinx for the two

implemented modules, RPR with a degree of 14/32 and TMR, a more detailed conclusion

can be made concerning the RPR method and is discussed in greater detail in Chapter VI.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The objective of this thesis was the creation of a FFT structure that would be

implemented in a FPGA, adopting two different methods of redundancy, TMR and RPR.

The purpose was to investigate the capabilities of RPR. First a simple 64-point Radix-4

in-place FFT was implemented that could handle fixed point, 2’s complement numbers

and was tested with accurate results. Next, a TMR structure was designed by replicating

three identical FFT structures and by importing a voter at the end of each stage. The next

stage was the design of a RPR structure with a degree of 8/32. The design was

successfully implemented, but it failed to protect the system against radiation. Taking

into consideration the problems from the previous unsuccessful design, the construction

of a new RPR structure with a degree of 14/32 was conducted and resulted in a design

that worked correctly and managed to protect the FFT structure efficiently.

One of the major concerns about the RPR method is the size of the voter. This

thesis suggests a simple alteration from the method suggested from Snodgrass [1], where

there is no need for generating upper and lower bounds. Instead, the truncated value of

the precise number is formed and duplicated. This alteration helps simplifying things and

decreases the size of the voter, since now the voter can easily, with a bit-to-bit

comparison, verify the correctness of the truncated values and with a simple addition or

subtraction can output the predicted theoretical boundaries of the precise value.

Although several interesting results were obtained, during this research, relative to

the specific structure chosen (the 64-point Radix-4 in-place FFT), some conclusions with

broad theoretical impact should also be mentioned. These findings can be summarized

by the following statements: the RPR method is sufficient, it requires fewer resources,

and is more power efficient than TMR when considering arithmetic operations.

Additionally, with RPR, there are reduced resource requirements and power consumption

over TMR, but there is a sacrifice in precision.

 48

B. RECOMMENDATIONS FOR FUTURE STUDY

1. Overflow Manipulator

The current structure of this design did not permit a further decrease in RPR

degree, but the addition of an intelligent overflow manipulator in each stage would allow

abandonment of the high RPR degree and permit protection of each stage with the same

small amount of bits that are desired. This would enable further investigation of the

impact of RPR degree, and assist in understanding the trade-off of RPR degree, on

precision, capacity size, and power consumption.

2. Implementing a 4 Recursive Butterfly FFT Instead of the 12 Butterfly
FFT

The basic FFT module used in this thesis was required to handle data in real time.

That forced use of a four-BF structure per stage for the Radix-4 FFT, creating a rather

large FFT processor, requiring a significant number of embedded multipliers (33 percent)

and a trivial amount of remaining resources (less than 13 percent in all cases) for a Virtex

II XC2V6000 FPGA implementation. This revealed that this design had a significant

weakness, the embedded multipliers. It is interesting to note that in considering the FFT

design, a recursive four-BF multiple-stage expansion effort was evaluated. This would

have enabled the ability to keep the majority of the FFT structure intact, altering only the

controller. Of course, a replacement of the embedded multipliers would permit a

deviation from the Virtex II family, but even so, the decrease in the number of required

BFs, in addition to, the decrease in the demanded RAM resources would permit the

development of a less resource demanding FFT, with RPR protection, at the price of

sacrificing the operational sample rate.

 49

APPENDIX A. FFT IMPLEMENTATION

This Appendix includes the 64-point, in-place, Radix-4, DIF FFT design as it is

described in Chapter IV.A. The module receives two fixed-point 32-bit inputs (real and

imaginary) and outputs two fixed-point 32-bit results. The design was implemented in a

Virtex II XC2V6000 BF957 using Xilinx tools. The synthesis report confirmed that the

design worked at a clock speed of 225MHz.

 50

A1. FFT MODULE–XILINX SCHEMATIC DESIGN

Figure 19. FFT Design—Entirely Layout

 51

Figure 20. FFT’s First Stage Layout

 52

Figure 21. RAM Structure

A2. FFT MODULE—XILINX BEHAVIORAL AND STRUCTURAL DESIGN

A2.1. Main Controller of TMR

`timescale 1ns / 1ps
module
Controler_FFT(CLK,RESET,WE_FFT,WE_stage1,WE_stage2,WE_stage3,WE_Bit_Rev
ersing_Last_Stage,WE_Compute_Factor_Stage1,WE_Compute_Factor_Stage2,WE_Co
mpute_Factor_Stage3);

 53

input CLK,RESET,WE_FFT;
output reg WE_stage1,WE_stage2,WE_stage3;
output reg WE_Compute_Factor_Stage1=0;
output reg WE_Compute_Factor_Stage2=0;
output reg WE_Compute_Factor_Stage3=0;
output reg WE_Bit_Reversing_Last_Stage=0;
reg [8:0] counter_FFT=0;

always @(posedge CLK)
begin

WE_stage1=WE_FFT;
if (RESET)
 begin
 counter_FFT<=0;
 WE_stage1=0;
 WE_stage2=0;
 WE_stage3=0;
 end
if (WE_stage1==1)
 begin
 if (counter_FFT==85) WE_stage2=1;
 if (counter_FFT==170) WE_stage3=1;
 if (counter_FFT==51) WE_Compute_Factor_Stage1=1;
 if (counter_FFT==112) WE_Compute_Factor_Stage2=1;
 if (counter_FFT==117) WE_Compute_Factor_Stage3=1;
 if (counter_FFT==256) WE_Bit_Reversing_Last_Stage=1;
 counter_FFT<=counter_FFT+1; //< !!!!
 end
//keep in mind that the controller of each stage needs 2 clocks from the time it is
triggered
// to the time that can handle the inputs.
end
endmodule

A2.II. Reversing Bit of Last Stage Module

`timescale 1ns / 1ps
module Reversing_Last_Stage(CLK,WE_Bit_Reversing,Address_of_Output_Result);
input CLK;
input WE_Bit_Reversing;
reg [7:0] order_Inp_Memory=0;
output reg [6:0] Address_of_Output_Result=0;
always @(posedge CLK)

 54

begin
//I have to proceed in bit reversing in every stage. It is convenient to change the Input
//Address(reversing the bit) before the data are trasnfered into RAM of the next stage.
// I have to manipulate the 6bit . I have to make a bit
// reversal based on Radix4(four decimal system) => for example :300 -> 003 ,
// 012->210 etc.
if (WE_Bit_Reversing)
begin
 if (order_Inp_Memory==64)
 begin
 order_Inp_Memory=0;
 end
Address_of_Output_Result
={order_Inp_Memory[6],order_Inp_Memory[1],order_Inp_Memory[0],order_Inp_Mem
ory[3],order_Inp_Memory[2],order_Inp_Memory[5],order_Inp_Memory[4]};
order_Inp_Memory=order_Inp_Memory+1'b1;
end
end
endmodule

A2.III. Controller of First Stage Timescale 1ns / 1ps

module Controller_of_BF_stage1(CLK,RESET,WE,WE_BF_for_multiplexer,
order_Memory1, order_Twiddle9, order_Inp_Memory1);

//based on - Fast Fourier Transform [64FFT] Univ. of the Ryukyus, Okinawa, Japan
//from the moment the WE_basic_stage1 is on (1), the Sampled_Input_signal must be
//imported on the second following CLK, meaning:
// WE_basic_stage1 is on at CLK0
// Ram_input_sampled_signal will be active at CLK2
input CLK,RESET,WE;
output reg [6:0] order_Memory1;//7bit each piece(due to 64 present)
output reg [5:0] order_Twiddle9;//6bit each piece(due to 64 present)
output reg [6:0] order_Inp_Memory1;//7bit each piece
output reg WE_BF_for_multiplexer;
reg [6:0] order_Memory;
reg [5:0]
order_Twiddle,order_Twiddle1,order_Twiddle2,order_Twiddle3,order_Twiddle4,order_
Twiddle5,order_Twiddle6,order_Twiddle7,order_Twiddle8;
reg [6:0] order_Inp_Memory;
parameter stage=1;
parameter N=64;
reg [5:0] counter=5'b00000;
reg [7:0] count_for_each_BF=8'b0;
reg [6:0] inpA=7'b0;

 55

reg [5:0] counter2=6'b010010;//if I need 18 clks delay ???//mallon den 8a xreiastw to
order_stage 2 Memory
reg [7:0] changer1=64
//in stage 1, Controller needs 1 clock in order to give the right output
always @(posedge CLK)
begin
 case (stage)
 1:
 begin
//order_Memory:generates the output address for stage1 Memory: 0,16,32,48 - 1,17,33,49
//keep in mind that order_Memory has to take into consideration, in which place
//is your data in RAM. First 64 slots or next 64 slots ((changer1: task)
//order_Twiddle: generates the output address for stage1 Twiddle: 0,0,0 - 0,1,2 - 0,2,4 - ...
//order_Inp_Memory:generates the input address for stage1 Memory: 0,1,2,3,4,....63 -
64,65..127
 if (WE)
 begin

 if (inpA==127) inpA<=0;
 inpA<=inpA+1;
 order_Memory<=count_for_each_BF+counter+changer1;
 order_Inp_Memory<=inpA;
 if (RESET)
 begin
 counter<=5'b00000;
 count_for_each_BF<=0;
 counter2<=13;
 inpA<=0;
 end

 if (((inpA)>=63)&(inpA<127)) changer1<=0; // changer1 is responsible
for be the pointer in RAM for the two
 else changer1<=64;
 if (count_for_each_BF==0)
 begin
 order_Twiddle<=32'b01000000000000000000000000000000;
 WE_BF_for_multiplexer <=1;
 end
 if (count_for_each_BF==16)
 begin
 order_Twiddle<=counter;
 WE_BF_for_multiplexer <=0;
 end
 if (count_for_each_BF==32)
 begin

 56

 order_Twiddle<=counter<<1;//b2<=counter*2;
 WE_BF_for_multiplexer <=1;
 end
 if (count_for_each_BF==48)
 begin
 order_Twiddle<=(counter<<1)+(counter);//b3<=counter*3;
 WE_BF_for_multiplexer <=1;
 end
 count_for_each_BF<=count_for_each_BF+16;
 if (count_for_each_BF==48)
 begin
 count_for_each_BF<=0;
 counter<=counter+1;
 counter2<=counter2+1;
 if (counter==15)
 begin
 counter<=0;
 end
 // the following 2 if statements are for the order_Stage2_Memory
 if (counter2==15)
 begin
 counter2<=0;
 end
 end
 end
 end
 endcase
end

//One stage registers for the commands
always @(posedge CLK)
begin
order_Inp_Memory1=order_Inp_Memory;
order_Memory1=order_Memory;
order_Twiddle1=order_Twiddle;
end
// The Wn_real and Wn_im are by-passing the "Compute Factor". So I have to "delay"
the Wn the same
// amount of clocks as if they were imported to "Compute Factor". In order to avoid
confusing
// parameter in Controler and in order to avoid using pipelined registers for the Wn in
Ram,

//Register for Order_Twiddle
always @(posedge CLK)

 57

begin
 order_Twiddle2<=order_Twiddle1;
end
always @(posedge CLK)
begin
 order_Twiddle3<=order_Twiddle2;
end
 always @(posedge CLK)
begin
 order_Twiddle4<=order_Twiddle3;
end
 always @(posedge CLK)
begin
 order_Twiddle5<=order_Twiddle4;
end
 always @(posedge CLK)
begin
 order_Twiddle6<=order_Twiddle5;
end
 always @(posedge CLK)
begin
 order_Twiddle7<=order_Twiddle6;
end
always @(posedge CLK)
begin
 order_Twiddle8<=order_Twiddle7;
end
always @(posedge CLK)
begin
 order_Twiddle9<=order_Twiddle8;
end
endmodule

A2.IV. RAM

`timescale 1ns / 1ps
module Ram_edition1_stage1(
 order_Memory,
 order_Twiddle,
 Ain_real,Ain_im,
 Win_real1,Win_im1,
 Ram_input_sampled_signal_real0,
 Ram_input_sampled_signal_im0,
 addr_Inp,
 WE,
 CLK

 58

);

// Includes both Twiddle Rom and Memory RAM for each stage
// This Edition has 1 Real and 1 Image Part, does not include the "twiddle ROM"
// and actually has 2 128N RAMs constructed by Coregen (based exactly on the Xilinx
Library
// RAMB16_S36_S36)
input [31:0] Ram_input_sampled_signal_real0,Ram_input_sampled_signal_im0;
input [6:0] order_Memory;// gives the address of the output that we need
input [5:0] order_Twiddle;//gives the address of the twiddle that we need
input [6:0] addr_Inp;// gives the Input address that we had to store the values
input CLK;
output [31:0] Ain_real,Ain_im;
output [31:0] Win_real1,Win_im1;
wire [31:0]twiddle_real [63:0];
wire [31:0]twiddle_im [63:0];
wire [2047:0] twiddle_real_A,twiddle_im_A ;
input WE;
Ram_Schemat_stage1_ed2
AA2(CLK,addr_Inp,Ram_input_sampled_signal_im0,Ram_input_sampled_signal_real0,
order_Memory,WE, Ain_im,Ain_real);
///////////////////
//the following are the 64 32bit numbers twiddle compute by matlab

assign
twiddle_real_A=2048'b01000000000000000000000000000000001111111011000100011
011010001110011111011000101001011111001111100111101001111101000001010101
101001110110010000011010111100111100011100001110001011001011110001100110
101001101101100110001010010001100010111100100000000110101100010110101000
001001111001100110000101000100110011110011001001010001000111000111001110
110011100110001111000101011010111010011100000011000011111011110001010100
110000100101001010000000110001011100000110001111100010111000001111000000
110010001011110100110101111000000000000000000000000000000001111100110111
010000101100101000011110011100000111010001111100001111011010110101111111
001110100011110011110000010000111010101100111100001110101001010001011000
111110111000111000110001001100011001101011101100110000110011011010111010
010101111101100001100110011110011101000011011111111001010011100101011001
001001100111010110111000111100011101001101000011100110001001101111100101
000011000011100001011000001011111010101001011000001001110101101000001100
000110000000100111011100100101110001100000000000000000000000000000011000
000010011101110010010111000110000010011101011010000011000001100001011000
001011111010101001011000100110111110010100001100001110001111000111010011
010000111001100101011001001001100111010110111001110100001101111111100101

 59

001110100101011111011000011001100111101011101100110000110011011010111011
100011100011000100110001100111000011101010010100010110001111110011110000
010000111010101100111101101011010111111100111010001111100111000001110100
011111000011111100110111010000101100101000011111111111111111111111111111
111000001100100010111101001101011110000110001111100010111000001111000010
010100101000000011000101110000110000111110111100010101001100001111000101
011010111010011100000100011100011100111011001110011001010001001100111100
110010010100010110101000001001111001100110000110001011110010000000011010
110001101010011011011001100010100100011100001110001011001011110001100111
011001000001101011110011110001111010011111010000010101011010011111011000
101001011111001111100111111101100010001101101000111;

assign twiddle_im_A
=2048'b00000000000000000000000000000000000001100100010111101001101011110
000110001111100010111000001111000010010100101000000011000101110000110000
111110111100010101001100001111000101011010111010011100000100011100011100
111011001110011001010001001100111100110010010100010110101000001001111001
100110000110001011110010000000011010110001101010011011011001100010100100
011100001110001011001011110001100111011001000001101011110011110001111010
011111010000010101011010011111011000101001011111001111100111111101100010
001101101000111010000000000000000000000000000000011111110110001000110110
100011100111110110001010010111110011111001111010011111010000010101011010
011101100100000110101111001111000111000011100010110010111100011001101010
011011011001100010100100011000101111001000000001101011000101101010000010
011110011001100001010001001100111100110010010100010001110001110011101100
111001100011110001010110101110100111000000110000111110111100010101001100
001001010010100000001100010111000001100011111000101110000011110000001100
100010111101001101011110000000000000000000000000000000011111001101110100
001011001010000111100111000001110100011111000011110110101101011111110011
101000111100111100000100001110101011001111000011101010010100010110001111
101110001110001100010011000110011010111011001100001100110110101110100101
011111011000011001100111100111010000110111111110010100111001010110010010
011001110101101110001111000111010011010000111001100010011011111001010000
110000111000010110000010111110101010010110000010011101011010000011000001
100000001001110111001001011100011000000000000000000000000000000110000000
100111011100100101110001100000100111010110100000110000011000010110000010
111110101010010110001001101111100101000011000011100011110001110100110100
001110011001010110010010011001110101101110011101000011011111111001010011
101001010111110110000110011001111010111011001100001100110110101110111000
111000110001001100011001110000111010100101000101100011111100111100000100
001110101011001111011010110101111111001110100011111001110000011101000111
110000111111001101110100001011001010000;

 generate
 genvar e;

 60

 for (e=1;e<65;e=e+1)
 begin : L1
 assign twiddle_real[64-e][31:0]=twiddle_real_A[(e*32-1):((e-
1)*32)];
 assign twiddle_im[64-e][31:0]=twiddle_im_A[(e*32-1):(e-1)*32];
 end
 endgenerate

assign Win_real1=twiddle_real[{1'b0,order_Twiddle[5:0]}];//here
you have to put the twiddle data
assign Win_im1= twiddle_im[{1'b0,order_Twiddle[5:0]}];
endmodule

A2.V. Multiplexer and Voter of Each Stage

`timescale 1ns / 1ps
module Multiplexer_A(clk,Input_realA,Input_imageA,Input_realB,Input_imageB,
WE_BF_for_multiplexer,Out_real,Out_im);
input [31:0] Input_realA,Input_imageA,Input_realB,Input_imageB;
input clk,WE_BF_for_multiplexer;
output reg [31:0] Out_real;
output reg [31:0] Out_im;
always @(posedge clk)
begin
 if (WE_BF_for_multiplexer)
 begin
 Out_real <=Input_realA;
 Out_im <=Input_imageA;
 end
 else
 begin
 Out_real <=Input_realB;
 Out_im <=Input_imageB;
 end
end
endmodule

A2.VI. Compute Factor

`timescale 1ns/1ps

//11-12-09 32bit input, N=64, Radix4
module Compute_Factor(clk,WE_BF,Input_real,Input_image,factorA,factorB,Aout_real,
Aout_im,WE_compute_factor);
input clk,WE_compute_factor;
input [31:0] Input_real,Input_image;

 61

output reg [31:0] Aout_real,Aout_im ;
output reg [31:0] factorA,factorB;
output reg WE_BF;//gives the order to BF_multiplier to start the procedure.
reg [31:0] factor1_a,factor2_a,factor3_a,factor4_a,factor5_a,factor6_a ;
reg [31:0] factor1_b,factor2_b,factor3_b,factor4_b,factor5_b,factor6_b ;

reg [1:0] counter=0;
reg [1:0] uncounter=0;
reg [31:0] Ain_real,Ain_im,Bin_real,Bin_im,Cin_real,Cin_im,Din_real,Din_im ;
reg stage1=0;
reg stage2=0;
reg [31:0] Areal_a,Aim_a;
reg [31:0] Areal_b,Aim_b;
reg [31:0] t1,t2,t3,t4,t5,t6,t7,t8;
reg [31:0]Aoutreal_reg_0,Aoutim_reg_0;
reg [31:0]Aoutreal_reg_1,Aoutim_reg_1;
reg [31:0]Aoutreal_reg_2,Aoutim_reg_2;
reg [31:0]Aoutreal_reg_3,Aoutim_reg_3;
reg [31:0]Aoutreal_reg_4,Aoutim_reg_4;
reg [31:0]Aoutreal_reg_5,Aoutim_reg_5;
reg [31:0]Aoutreal_reg_6,Aoutim_reg_6;
reg [31:0]Aoutreal_reg_7,Aoutim_reg_7;
reg [31:0]Aoutreal_reg_8,Aoutim_reg_8;
reg [31:0]Aoutreal_reg_9,Aoutim_reg_9;
reg [31:0]Aoutreal_reg_10,Aoutim_reg_10;
reg [31:0]Aoutreal_reg_11,Aoutim_reg_11;
reg [31:0]Aoutreal_reg_12,Aoutim_reg_12;
reg [31:0] Real [3:0];
reg [31:0] Im [3:0];
always @(posedge clk)
begin
//The 'counter' pairs the 4 input and gives the order to the 'stage1' to start
//the calculation of the needed factors
if (WE_compute_factor)
begin
if (counter==2'b00)
 begin
 Ain_real<=Input_real;
 Ain_im<=Input_image;
 stage1<=0;
 end
else if (counter==2'b01)
 begin
 Bin_real<=Input_real;
 Bin_im<=Input_image;

 62

 end
else if (counter==2'b10)
 begin
 Cin_real<=Input_real;
 Cin_im<=Input_image;
 end
else if (counter==2'b11)
 begin
 Din_real<=Input_real;
 Din_im<=Input_image;

 stage1<=1;
 end
counter=counter+1;
end
end
always @(posedge clk) // We compute all the factors here and also the Input and output
// that doesn't need multiplier. (Areal,Aim)
// In every 4 pairs due to Radix4, the one pair doesn't need multiplier
 begin
 if (stage1)
 begin
 factor1_a <= Ain_real+Bin_im;
 factor1_b <= Cin_real+Din_im;
 factor2_a <= Ain_real+Cin_real;
 factor2_b <= Bin_real+Din_real;
 factor3_a <= Ain_real+Din_im;
 factor3_b <= Cin_real+Bin_im;
 factor4_a <= Ain_im+Din_real;
 factor4_b <= Cin_im+Bin_real;
 factor5_a <= Ain_im+Cin_im;
 factor5_b <= Bin_im+Din_im;
 factor6_a <= Ain_im+Bin_real;
 factor6_b <= Cin_im+Din_real;

 Areal_a <=Ain_real+Bin_real;
 Areal_b <=Cin_real+Din_real;
 Aim_a <=Ain_im+Bin_im;
 Aim_b <=Cin_im+Din_im;

 stage2<=1;
 end
 end

always @(posedge clk)

 63

begin
 t1<=Areal_a+Areal_b;
 t2<=Aim_a+Aim_b;
 t3<=factor1_a-factor1_b;
 t4<=factor4_a-factor4_b;
 t5<=factor2_a-factor2_b;
 t6<=factor5_a-factor5_b;
 t7<=factor3_a-factor3_b;
 t8<=factor6_a-factor6_b;
end

always @(posedge clk)
begin
WE_BF<=0;
 if (stage2)
 begin
 if (uncounter==2'b01)
 begin
 Aoutreal_reg_0 <=t1;
 Aoutim_reg_0 <=t2;
 WE_BF<=1;
 end
 else if (uncounter==2'b10)
 begin
 factorA <=t3;
 factorB<=t4;
 WE_BF<=1;
 end
 else if (uncounter==2'b11)
 begin
 factorA <=t5;
 factorB<=t6;
 WE_BF<=1;
 end
 else if (uncounter==2'b00)
 begin
 factorA <=t7;
 factorB<=t8;
 WE_BF<=1;
 end
 uncounter=uncounter+1;
 end

end
//my BF_multiplier1 needs 10 cycles in order to send the input to output

 64

// that's why I need to keep my Aim, Areal for 11 cycles. #11||
//register1 for Areal,Aim
always @(posedge clk)
begin
 Aoutreal_reg_1 <= Aoutreal_reg_0;
 Aoutim_reg_1 <= Aoutim_reg_0;

end
always @(posedge clk)
begin
 Aoutreal_reg_2 <= Aoutreal_reg_1;
 Aoutim_reg_2 <= Aoutim_reg_1;

end

always @(posedge clk)
begin
 Aoutreal_reg_3 <= Aoutreal_reg_2;
 Aoutim_reg_3 <= Aoutim_reg_2;

end
always @(posedge clk)
begin
 Aoutreal_reg_4 <= Aoutreal_reg_3;
 Aoutim_reg_4 <= Aoutim_reg_3;

end
always @(posedge clk)
begin
 Aoutreal_reg_5 <= Aoutreal_reg_4;
 Aoutim_reg_5 <= Aoutim_reg_4;

end
always @(posedge clk)
begin
 Aoutreal_reg_6 <= Aoutreal_reg_5;
 Aoutim_reg_6 <= Aoutim_reg_5;

end
always @(posedge clk)
begin
 Aoutreal_reg_7 <= Aoutreal_reg_6;
 Aoutim_reg_7 <= Aoutim_reg_6;

end

 65

always @(posedge clk)
begin
 Aoutreal_reg_8 <= Aoutreal_reg_7;
 Aoutim_reg_8 <= Aoutim_reg_7;

end
always @(posedge clk)
begin
 Aoutreal_reg_9 <= Aoutreal_reg_8;
 Aoutim_reg_9 <= Aoutim_reg_8;

end
always @(posedge clk)
begin
 Aoutreal_reg_10 <= Aoutreal_reg_9;
 Aoutim_reg_10 <= Aoutim_reg_9;

end
always @(posedge clk)
begin
 Aoutreal_reg_11 <= Aoutreal_reg_10;
 Aoutim_reg_11 <= Aoutim_reg_10;

end
always @(posedge clk)
begin
 Aout_real <= Aoutreal_reg_11;
 Aout_im <= Aoutim_reg_11;

end
endmodule

A2.VII. BF’s Multiplier

`timescale 1ns / 1ps
//02-01-10 32bit input, N=64, Radix4
module BF_multiplier1
(clk,reset,clk_enable,Wn_real1,Wn_im1,factorA,factorB,out1_real,out1_im);
input [31:0] Wn_real1,Wn_im1 ;
input [31:0] factorA,factorB ;
input clk,clk_enable,reset;
// clk_enable = WE_BF from Compute Factor.
// only if it is enabled, the multiplier functions are going to worked.
// otherwise, every 4 signals, one is going to run through the multiple pipeline
// registered insted of the multipliers
output reg [31:0] out1_real;

 66

output reg [31:0] out1_im;
wire [31:0] out1_real0;
wire [31:0] out1_im0;
reg [31:0] Wn_real0;
reg [31:0] Wn_im0;
reg [31:0] factorA1;
reg [31:0] factorB1;
wire [31:0] Sum1a ;
wire [31:0] Sum1b ;
wire [31:0] Sum2a ;
wire [31:0] Sum2b ;

//using the traditional way as described in N.Gkikas thesis
// each time computes only one pair of output.
// So every time uses the 4 multipliers of virtex2
// in every clk accepts new input for computing the 1 pair of FFT stage.
//11-12-09 32bit input, N=64, Radix4
//register1
always @(posedge clk)
begin
 if (clk_enable)
 begin
 Wn_real0 <=Wn_real1;
 Wn_im0 <=Wn_im1;
 factorA1 <=factorA;
 factorB1 <=factorB;
 end

end
// Based on the following procedure
// for (n=0;n<3;n=n+1)
// begin
//msb_keeper_real[63:0]= factor[1+n][31:0]*Wn_real[n][31:0] -
factor[4+n][31:0]*Wn_im[n][31:0];
//msb_keeper_im[63:0]= factor[4+n][31:0]*Wn_real[n][31:0] +
factor[1+n][31:0]*Wn_im[n][31:0];
// out1_real=msb_keeper_real [63:32];
// out1_im =msb_keeper_im [63:32];
// end
//mult_32x32_edit1(clk,reset,clk_enable,Ainput,Binput,Sumfinal)

mult_32x32_edit2 i1(clk,reset,clk_enable,factorA1,Wn_real0,Sum1a);
mult_32x32_edit2 i2(clk,reset,clk_enable,factorB1,Wn_im0,Sum1b);

 67

mult_32x32_edit2 i3(clk,reset,clk_enable,factorB1,Wn_real0,Sum2a);
mult_32x32_edit2 i4(clk,reset,clk_enable,factorA1,Wn_im0,Sum2b);
assign out1_real0=Sum1a+Sum1b;
assign out1_im0 =Sum2a-Sum2b;
//register 3
always @(posedge clk)
begin
 if (clk_enable)
 begin
 out1_real<=out1_real0;
 out1_im <=out1_im0;
 end
end
endmodule

A2.VIII. Multiplier 32x32 Module

`timescale 1ns/100ps
// This program is a 32x32 bit multiplier that uses the MULT18x18S multipliers of
// Virtex2 and send the 3 [..]bit results to the CSA. The multiple CSA give us 2 outputs
// that we send afterwards to the modified CLA in order to take the final result.
// we concatenate the final result in order to have an 32bit output the results were checked
// and are correct

// multiplier Edition 3
module mult_32x32_edit2(clk,reset,clk_enable,Ainput,Binput,Sumfinal);
input [31:0] Ainput,Binput;
input clk,clk_enable,reset;
wire [63:0] Sumfinal_not_ready;
output reg [31:0] Sumfinal;//reg
wire Areg_sign,Breg_sign;
reg [35:0] Ain,Bin;
wire [35:0] Ain0,Bin0;
reg [17:0] Ain1=18'b0;
reg [17:0] Ain2=18'b0;
reg [17:0] Bin1=18'b0;
reg [17:0] Bin2=18'b0;
reg [17:0] Ain1_part2,Ain2_part2,Bin1_part2,Bin2_part2;
wire [16:0] C1,C1a;
wire [10:0] C0;
wire [63:0] Addition1, Addition2, Addition3;
wire [63:0] Sum1,Sum2,Sum3;
reg [63:0] Addition1a, Addition2a, Addition3a;
wire [35:0] telos1,telos2,telos3,telos4;
reg [35:0] a_telos3,a_telos4;
assign C0=11'b00000000000;//10

 68

assign
Ain0=Ainput[31]?{3'b111,Ainput[31:17],1'b0,Ainput[16:0]}:{4'b0000,Ainput[30:17],1'b
0,Ainput[16:0]};
assign
Bin0=Binput[31]?{3'b111,Binput[31:17],1'b0,Binput[16:0]}:{4'b0000,Binput[30:17],1'b
0,Binput[16:0]};
always @(posedge clk)
 begin
 Ain1<={1'b0,Ain0[16:0]};
 Bin1<={1'b0,Bin0[16:0]};
 Ain2<=Ain0[35:18];
 Bin2<=Bin0[35:18];
 end
MULT18X18S A0B1 (.A(Ain1),
 .B(Bin2),
 .C(clk),
 .CE(clk_enable),
 .R(reset),
 .P(telos3));//anti 71
MULT18X18S A1B0 (.A(Ain2),
 .B(Bin1),
 .C(clk),
 .CE(clk_enable),
 .R(reset),
 .P(telos4));

always @(posedge clk)
begin
 a_telos3<=telos3[35:0];
 a_telos4<=telos4[35:0];
 Ain1_part2<=Ain1;
 Bin1_part2<=Bin1;
 Ain2_part2<=Ain2;
 Bin2_part2<=Bin2;
end
MULT18X18S A0B0 (.A(Ain1_part2),
 .B(Bin1_part2),
 .C(clk),
 .CE(clk_enable),
 .R(reset),
 .P(telos1));
MULT18X18S A1B1 (.A(Ain2_part2),
 .B(Bin2_part2),
 .C(clk),
 .CE(clk_enable),

 69

 .R(reset),
 .P(telos2));//anti 71

assign C1=a_telos3[35]?17'b11111111111111111:17'b00000000000000000;
assign C1a=a_telos4[35]?17'b11111111111111111:17'b00000000000000000;
assign Addition1={telos2,telos1[33:6]};
assign Addition2={C1,a_telos3,C0};
assign Addition3={C1a,a_telos4,C0};

always @(posedge clk)
begin
 Addition1a<=Addition1;
 Addition2a<=Addition2;
 Addition3a<=Addition3;

end
csa_for_multiplier_beh_pip32x32_a
aat(Addition1a,Addition2a,Addition3a,Sum1,Sum2,clk);
//there is a register in csa , thats why I dont use one here.

multiplier_behav_pip_a aaw (Sum1,Sum2,Sum3,clk);
//there is a register in CLAH , thats why I dont use one here.

always @(posedge clk)
begin
Sumfinal<=Sum3[55:24];//final_not_ready[55:24];
end
endmodule

 A2.IX. BF Multiplier—CSA module

`timescale 1ns / 1ps
//CSA . We create a 64 CSA that have 3 inputs and 2 outputs.
//We collect the inputs from the 4 multipliers of virtex2 MULT18x18S
//We send the two outputs to the Carry Lookahead adder of the
multplier_behav_pip_32x23

module csa_for_multiplier_beh_pip32x32_a(Ain,Bin,Cin,Output1,Output2,CLK2);
input [63:0] Ain,Bin,Cin;
output reg [63:0] Output1,Output2;
input CLK2;
reg [63:0] Cout,Sum;
integer i;
always @(posedge CLK2)

 70

 begin
// Sum[1]=Ain[1]+Bin[1];
// Cout[1]=1'b0;
 for (i=0;i<64;i=i+1)
 begin :L1
 Cout[i]<=(Ain[i]&Bin[i])|(Ain[i]&Cin[i])|(Bin[i]&Cin[i]);
 Sum[i]<= Ain[i]^Bin[i]^Cin[i];
 end
end
always @(Sum)
 begin
 Output2[63:0]<=Sum[63:0];
 Output1[63:0]<={Cout[62:0],1'b0};
 end
endmodule

A2.X. BF Multiplier—CLAH module

`timescale 1ns / 1ps
module multiplier_behav_pip_a(Ain,Bin,Summary,CLK1);
input [63:0] Ain,Bin;
output [63:0] Summary;
input CLK1;
wire C0;
wire [15:0] Gener,Propagate ;
reg [3:0] Propagate3stage1,Gener3stage1 ;
wire [3:0] Propagate3stage,Gener3stage;
wire [11:0] doesntmatter ;
wire useless,useless1;
wire [7:0] doesntmatter1;
reg [63:0] Ain1,Ain2,Ain3,Ain4,Bin1,Bin2,Bin3,Bin4;
reg [15:0] Gener1,Gener2,Gener3,Propagate1,Propagate2,Propagate3 ;
reg [3:0] Cin1;
reg [15:0] Cjfinal;
wire [11:0] Cjstage5;
wire [2:0] Cin4stage;
assign C0=0;

//stage 1
 generate
 genvar e;
 for (e=0;e<16;e=e+1)
 begin : L1

 //assign A=

 71

 //assign B=Bin[3+e*4:0+e*4];

 alu1 u1 (Ain[3+e*4:0+e*4],Bin[3+e*4:0+e*4],C0,Gener[e], Propagate[e]);
 end
 endgenerate

//Register1
always @(posedge CLK1)
 begin
Gener1[15:0]<=Gener[15:0];
Propagate1[15:0]<=Propagate[15:0];
Ain1[63:0]<=Ain[63:0];
Bin1[63:0]<=Bin[63:0];
 end

//stage 2
 generate
 genvar k;
 for (k=0;k<4;k=k+1)
 begin :L2
CLAH name1(Gener1[3+k*4:0+k*4],Propagate1[3+k*4:0+k*4],C0, Gener3stage[k],
Propagate3stage[k], doesntmatter[2+k*3:0+k*3]);

 end
 endgenerate

// Register2
always @(posedge CLK1)
 begin

Gener3stage1[3:0]<=Gener3stage[3:0];
Propagate3stage1[3:0]<=Propagate3stage[3:0];
Gener2[15:0]<=Gener1[15:0]; //we keep them in order to use them on stage 4
Propagate2[15:0]<=Propagate1[15:0];//we keep them in order to use them on stage 4
//Cj_reg2[3:1]=doesnmatter[2:0];//stores only the Cj from the first CLAH ???
Ain2[63:0]<=Ain1[63:0];
Bin2[63:0]<=Bin1[63:0];
end
//stage 3
CLAH name2(Gener3stage1[3:0],Propagate3stage1[3:0],C0,useless,useless1,
Cin4stage[2:0]);

// Register3
always @(posedge CLK1)
 begin

 72

Cin1[3:0]<={Cin4stage[2:0],C0};//input as the Cin to the CLAH of stage 4-Cin for
CLAH 1 is 0 (we dont have Cin in start)
Gener3[15:0]<=Gener2[15:0]; //we keep them in order to use them on stage 4
Propagate3[15:0]<=Propagate2[15:0];//we keep them in order to use them on stage 4
Ain3[63:0]<=Ain2[63:0];
Bin3[63:0]<=Bin2[63:0];
end

//stage 4
generate
 genvar i;
 for (i=0;i<4;i=i+1)
 begin :L3

CLAH name3 (Gener3[3+i*4:0+i*4],Propagate3[3+i*4:0+i*4], Cin1[i],doesntmatter1[i],
doesntmatter1[i+4],Cjstage5[2+i*3:0+i*3]);

 end
 endgenerate

// Register 4
always @(posedge CLK1)
 begin

Cjfinal[15:0]<={Cjstage5[11:9],Cin1[3],Cjstage5[8:6],Cin1[2],Cjstage5[5:3],Cin1[1],Cjs
tage5[2:0],Cin1[0]};
Ain4[63:0]<=Ain3[63:0];
Bin4[63:0]<=Bin3[63:0];
end

//stage 5
 generate
 genvar p;
 for (p=0;p<16;p=p+1)
 begin :L4

alu2 u2 (Ain4[3+p*4:0+p*4],Bin4[3+p*4:0+p*4],Cjfinal[p],Summary[3+p*4:0+p*4]);
 end
 endgenerate
endmodule

///////////////////////////////////

module alu1 (A,B,C0,Gener,Propagate);

 73

//parameter n=4;
input C0;
input [3:0] A,B;//n-1
output reg Gener;
output reg Propagate;
wire [4:1] g; //n
wire [4:1] prop; //n
and and0 (g[1],A[0],B[0]);
and and1 (g[2],A[1],B[1]);
and and2 (g[3],A[2],B[2]);
and and3 (g[4],A[3],B[3]);
xor xor1(prop[1],A[0],B[0]);
xor xor2(prop[2],A[1],B[1]);
xor xor3(prop[3],A[2],B[2]);
xor xor4(prop[4],A[3],B[3]);
always@(A,B,C0)
 begin
 Propagate=prop[1]&prop[2]&prop[3]&prop[4];//i didnt put the C0
 Gener=
g[1]&prop[2]&prop[3]&prop[4]|g[2]&prop[3]&prop[4]|g[3]&prop[4]|g[4];
 end
endmodule

/////////////////////////

module alu2 (A,B,C0,Sum);
input C0;
input [3:0] A,B ;//n-1
output reg [3:0] Sum ;//n-1
reg Cout;
always@(A,B,C0)

 begin
 {Cout,Sum}= A+B+C0;
 end
endmodule

/////////////////////////////

module CLAH(G,P,C0,Generatea,Propagate,Cj);
input C0;
input [4:1] G,P;
output [3:1] Cj;
output Generatea,Propagate;
assign Propagate=P[1]&P[2]&P[3]&P[4];

 74

assign Generatea=G[1]&P[2]&P[3]&P[4]|G[2]&P[3]&P[4]|G[3]&P[4]|G[4];
assign Cj[1]=(P[1]&C0)|G[1];
assign Cj[2]=G[2]|(P[2]&G[1])|(P[2]&P[1]&C0);
assign Cj[3]=G[3]|(P[3]&G[2])|(P[3]&P[2]&G[1])|(P[3]&P[2]&P[1]&C0);
endmodule

 75

APPENDIX B. TMR IMPLEMENTATION

This appendix includes the TMR version of the 64-point, in-place, Radix-4, DIF

FFT design as it is described in Chapter IV.B.1. All arithmetic calculations are protected

by triple redundancy. The module receives two fixed-point 32-bit inputs (real and

imaginary) and outputs two fixed-point 32-bit results. In the last step of each FFT’s

stage, the three computed values are inspected by a voter, based on the principle of triple

redundancy. The design failed to be implemented in a Virtex II XC2V6000 BF957 and

was finally implemented in a Virtex II XC2V8000 5FF1152 using Xilinx tools. The

synthesis report from the XC2V6000 confirmed that the design needed 85 cycles per

stage, a total of 255 cycles of latency at a clock speed of 134MHz.

In this appendix, only the schematic and the structural or behavioral modules that

were changed or added after the creation of the basic FFT design (Appendix A) are

illustrated.

 76

B1. TMR MODULE—XILINX SCHEMATIC DESIGN

Figure 22. TMR’s Entirely Concept Layout.

 77

Figure 23. TMR’s First Stage Layout.

 78

Figure 24. TMR’s BF Module

B2. TMR MODULE—XILINX BEHAVIORAL AND STRUCTURAL DESIGN

B2.I. Multiplexer and Voter of Each Stage

`timescale 1ns / 1ps
Module MultiplexerA_TMR(clk,Input1_realA,Input1_imageA,Input1_realB,
Input1_imageB, Input2_realA, Input2_imageA,Input2_realB,Input2_imageB,
Input3_realA, Input3_imageA,Input3_realB,Input3_imageB,
WE_BF_for_multiplexer,Out_real,Out_im);

 79

input [31:0] Input1_realA,Input1_imageA,Input1_realB,Input1_imageB;
input [31:0] Input2_realA,Input2_imageA,Input2_realB,Input2_imageB;
input [31:0] Input3_realA,Input3_imageA,Input3_realB,Input3_imageB;

input clk,WE_BF_for_multiplexer;
output [31:0] Out_real;
output [31:0] Out_im;
reg [31:0] Before_Voter_real [2:0];
reg [31:0] Before_Voter_im [2:0];
wire [31:0] Out0_real,Out0_im;
always @(posedge clk)
begin
 if (WE_BF_for_multiplexer)
 begin
 Before_Voter_real[0] <=Input1_realA;
 Before_Voter_im[0] <=Input1_imageA;
 Before_Voter_real[1] <=Input2_realA;
 Before_Voter_im[1] <=Input2_imageA;
 Before_Voter_real[2] <=Input3_realA;
 Before_Voter_im[2] <=Input3_imageA;
 end
 else
 begin

 Before_Voter_real[0] <=Input1_realB;
 Before_Voter_im[0] <=Input1_imageB;
 Before_Voter_real[1] <=Input2_realB;
 Before_Voter_im[1] <=Input2_imageB;
 Before_Voter_real[2] <=Input3_realB;
 Before_Voter_im[2] <=Input3_imageB;
 end
end

assign
Out0_real=(Before_Voter_real[0]==Before_Voter_real[1])?Before_Voter_real[0]:Before
_Voter_real[1];
assign Out_real=(Out0_real==Before_Voter_real[2])?Out0_real:Before_Voter_real[0];
assign
Out0_im=(Before_Voter_im[0]==Before_Voter_im[1])?Before_Voter_im[0]:Before_Vo
ter_im[1];
assign Out_im=(Out0_im==Before_Voter_im[2])?Out0_im:Before_Voter_im[0];
endmodule

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX C. RPR IMPLEMENTATION

This appendix includes the RPR version of the 64-point, in place, Radix-4, DIF

FFT design as it is described in Chapter IV.B.3. All arithmetic calculations of the FFT

are protected by the reduced precision redundancy method. The module receives two

fixed-point 32-bit inputs (real and imaginary) and outputs two fixed-point 32-bit results.

In the last step of each FFT’s stage, the precise value and the truncated values are

inspected by a voter, based on the principle of reduced precision redundancy. The design

was first implemented in a Virtex II XC2V6000 BF957 and then in a Virtex II

XC2V8000 5FF1152 using Xilinx tools. The synthesis report from the XC2V6000

confirmed that the design needed 85 cycles per stage, a total of 255 cycles of latency at a

clock speed of 163Mhz.

In this chapter, only the schematic and structural or behavioral modules that were

changed or added after the creation of the TMR design (Appendix B) are illustrated.

 82

C1. RPR MODULE—XILINX SCHEMATIC DESIGN

Figure 25. RPR- Entirely Module Layout

 83

Figure 26. RPR Module—Three Stages Layout

 84

Figure 27. RPR—First Stage Layout

 85

Figure 28. RPR—Butterfly

C2. RPR MODULE—XILINX STRUCTURAL AND BEHAVIORAL DESIGN

C2.I. Radiation Module

`timescale 1ns / 1ps
module Radiation(clk,Radiation);
input clk;
output [359:0] Radiation;
//Radiation Guide

 86

// Radiation [359:0]
// RadiationA[119:0] = Radiation [359:240] radiation of first stage
// RadiationB[119:0] = Radiation [239:120] radiation of second stage
// RadiationC[119:0] = Radiation [119:0] radiation of third stage
reg [13:0] RadiationAr_upper=14'b0;
reg [13:0] RadiationBr_upper=14'b0;
reg [13:0] RadiationCr_upper=14'b0;
reg [13:0] RadiationAr_lower=14'b0;
reg [13:0] RadiationBr_lower=14'b0;
reg [13:0] RadiationCr_lower=14'b0;
reg [31:0] RadiationAr_TMR=32'b0;
reg [31:0] RadiationBr_TMR=32'b0;
reg [31:0] RadiationCr_TMR=32'b0;
reg [13:0] RadiationAi_upper=14'b0;
reg [13:0] RadiationBi_upper=14'b0;
reg [13:0] RadiationCi_upper=14'b0;
reg [13:0] RadiationAi_lower=14'b0;
reg [13:0] RadiationBi_lower=14'b0;
reg [13:0] RadiationCi_lower=14'b0;
reg [31:0] RadiationAi_TMR=32'b0;
reg [31:0] RadiationBi_TMR=32'b0;
reg [31:0] RadiationCi_TMR=32'b0;
wire [119:0] RadiationA,RadiationB,RadiationC;
reg [1:0] counter=2'b00;
reg [2:0] random=3'b001;
parameter High=14'b00111000000000;
parameter Low= 14'b00000000000001;
reg [6:0] mm=0;
wire [13:0] Value1;
assign Value1=High;
always @(posedge clk)
begin
counter<=2;//counter+1;
random<=random+3'b001;
case(counter)
 0:
 begin
 RadiationAr_upper<=Value1+random;
 RadiationBr_upper<=Value1+random;
 RadiationCr_upper<=Value1+random;
 RadiationAi_upper<=Value1+random;
 RadiationBi_upper<=Value1+random;
 RadiationCi_upper<=Value1+random;
 RadiationAr_lower<=0;
 RadiationBr_lower<=0;

 87

 RadiationCr_lower<=0;
 RadiationAi_lower<=0;
 RadiationBi_lower<=0;
 RadiationCi_lower<=0;
 RadiationAr_TMR<=0;
 RadiationBr_TMR<=0;
 RadiationCr_TMR<=0;
 RadiationAi_TMR<=0;
 RadiationBi_TMR<=0;
 RadiationCi_TMR<=0;
 end
 1:
 begin
 RadiationAr_lower<=Value1+random;
 RadiationBr_lower<=Value1+random;
 RadiationCr_lower<=Value1+random;
 RadiationAi_lower<=Value1+random;
 RadiationBi_lower<=Value1+random;
 RadiationCi_lower<=Value1+random;
 RadiationAr_upper<=0;
 RadiationBr_upper<=0;
 RadiationCr_upper<=0;
 RadiationAi_upper<=0;
 RadiationBi_upper<=0;
 RadiationCi_upper<=0;
 RadiationAr_TMR<=0;
 RadiationBr_TMR<=0;
 RadiationCr_TMR<=0;
 RadiationAi_TMR<=0;
 RadiationBi_TMR<=0;
 RadiationCi_TMR<=0;
 end
 2:
 begin
 mm=mm+1;
 if ((mm==4))//||(mm==6)||(mm==7))
 begin
 RadiationBr_TMR<={(Value1[13:11]+random),Value1[10:0],18'b0};
 end
 else
 begin
 RadiationCr_TMR<=0;//{(Value1+random),18'b0};
 end
 RadiationCr_TMR<=0;//{(Value1+random),18'b0};
 RadiationAr_TMR<=0;//{(Value1+random),18'b0};

 88

 RadiationAi_TMR<=0;//{(Value1+random),18'b0};
 RadiationBi_TMR<=0;//{(Value1+random),18'b0};
 RadiationCi_TMR<=0;//{(Value1+random),18'b0};
 RadiationAr_upper<=0;
 RadiationBr_upper<=0;
 RadiationCr_upper<=0;
 RadiationAi_upper<=0;
 RadiationBi_upper<=0;
 RadiationCi_upper<=0;
 RadiationAr_lower<=0;
 RadiationBr_lower<=0;
 RadiationCr_lower<=0;
 RadiationAi_lower<=0;
 RadiationBi_lower<=0;
 RadiationCi_lower<=0;
 end

 3:
 begin
 RadiationAr_upper<=Value1+random;
 RadiationBr_TMR<={(Value1+random),18'b0};
 RadiationCr_lower<=Value1+random;
 RadiationAi_upper<=Value1+random;
 RadiationBi_TMR<={(Value1+random),18'b0};
 RadiationCi_lower<=Value1+random;
 RadiationBr_upper<=0;
 RadiationCr_upper<=0;
 RadiationBi_upper<=0;
 RadiationCi_upper<=0;
 RadiationAr_lower<=0;
 RadiationBr_lower<=0;
 RadiationAi_lower<=0;
 RadiationBi_lower<=0;
 RadiationAr_TMR<=0;
 RadiationCr_TMR<=0;
 RadiationAi_TMR<=0;
 RadiationCi_TMR<=0;
 end
endcase
end

assign
RadiationA[119:0]={RadiationAr_upper,RadiationAi_upper,RadiationAr_TMR,Radiatio
nAi_TMR,RadiationAr_lower,RadiationAi_lower};

 89

assign
RadiationB[119:0]={RadiationBr_upper,RadiationBi_upper,RadiationBr_TMR,Radiatio
nBi_TMR,RadiationBr_lower,RadiationBi_lower};
assign
RadiationC[119:0]={RadiationCr_upper,RadiationCi_upper,RadiationCr_TMR,Radiatio
nCi_TMR,RadiationCr_lower,RadiationCi_lower};
assign Radiation[359:0]={RadiationA,RadiationB,RadiationC};
endmodule

C2.II. Multiplexer and Voter of Each Stage

`timescale 1ns / 1ps
module
Multiplexer_RPR(clk,Input1_realA,Input1_imageA,Input1_realB,Input1_imageB,Input2
_realA,Input2_imageA,Input2_realB,Input2_imageB,Input3_realA,Input3_imageA,Input
3_realB,Input3_imageB,WE_BF_for_multiplexer,Out_real,Out_im);

input [13:0] Input1_realA,Input1_imageA,Input1_realB,Input1_imageB;
input [31:0] Input2_realA,Input2_imageA,Input2_realB,Input2_imageB;
input [13:0] Input3_realA,Input3_imageA,Input3_realB,Input3_imageB;
input clk,WE_BF_for_multiplexer;
output [31:0] Out_real;
output [31:0] Out_im;
reg signed [31:0] Before_Voter_real;
reg signed [31:0] Before_Voter_im;
reg signed [13:0] Upper_bond_real,Upper_bond_im,Lower_bond_real,Lower_bond_im;
reg signed [31:0] Median_real,Median_im;
reg signed [13:0] Bottom_real;
reg signed [13:0] Top_real;
reg signed [13:0] Bottom_im;
reg signed [13:0] Top_im;
reg signed [13:0] Precise_real;
reg signed [13:0] Precise_image;

wire [31:0] Out_real0,Out_im0;
wire K1_r,K2_r,K3_r;
wire K4_r,K5_r;
wire Omega_real;
wire K1_i,K2_i,K3_i;
wire K4_i,K5_i;
wire Omega_im;
always @(posedge clk)
begin
 if (WE_BF_for_multiplexer)
 begin

 90

 Upper_bond_real =Input1_realA;
 Upper_bond_im =Input1_imageA;
 Before_Voter_real =Input2_realA;
 Before_Voter_im =Input2_imageA;
 Lower_bond_real =Input3_realA;
 Lower_bond_im =Input3_imageA;
 end
 else
 begin

 Upper_bond_real =Input1_realB;
 Upper_bond_im =Input1_imageB;
 Before_Voter_real =Input2_realB;
 Before_Voter_im =Input2_imageB;
 Lower_bond_real =Input3_realB;
 Lower_bond_im =Input3_imageB;
 end

Median_real={({Upper_bond_real[13],Upper_bond_real}+{Lower_bond_real[13],Lower
_bond_real})>>1,18'b0};// means /2
Median_im={({Upper_bond_im[13],Upper_bond_im}+{Lower_bond_im[13],Lower_bo
nd_im})>>1,18'b0};//means /2
Top_real=Upper_bond_real+14'b00000000000100;
Bottom_real=Lower_bond_real+14'b11111111111100;
Top_im=Upper_bond_im+14'b00000000000100;
Bottom_im=Lower_bond_im+14'b11111111111100;
Precise_real=Before_Voter_real[31:18];
Precise_image=Before_Voter_im[31:18];
end

//RPR Voter
assign K1_r=(Top_real>=Bottom_real)?1'b1:1'b0;
assign K2_r=(Precise_real>Top_real)?1'b1:1'b0;
assign K3_r=(Precise_real<Bottom_real)?1'b1:1'b0;
and P1 (K4_r,K1_r,K2_r);
and P2 (K5_r,K1_r,K3_r);
or P3 (Omega_real,K4_r,K5_r);
assign Out_real=(Omega_real)?Median_real:Before_Voter_real;
assign K1_i=(Top_im>=Bottom_im)?1'b1:1'b0;
assign K2_i=(Precise_image>Top_im)?1'b1:1'b0;
assign K3_i=(Precise_image<Bottom_im)?1'b1:1'b0;
and P11 (K4_i,K1_i,K2_i);
and P21 (K5_i,K1_i,K3_i);
or P31 (Omega_im,K4_i,K5_i);
assign Out_im=(Omega_im)?Median_im:Before_Voter_im;

 91

// The following example is a behavioral voter of RPR
// But due to decrease in the speed I prefered
// the solution of a structural design as above.
////real voter
//if (Upper_bond_real>Lower_bond_real)
// begin
// if (Before_Voter_real>Top_real)
// begin
// Out_real={Median_real,24'b0};
// end
// else if (Before_Voter_real<Bottom_real)
// begin
// Out_real={Median_real,24'b0};
// end
// else
// begin
// Out_real=Before_Voter_real;
// end
// end
//else
// begin
// Out_real=Before_Voter_real;
// end
//
////image voter
//if (Upper_bond_im>Lower_bond_im)
// begin
// if (Before_Voter_im>Top_im)
// begin
// Out_im={Median_im,24'b0};
// end
// else if (Before_Voter_im<Bottom_im)
// begin
// Out_im={Median_im,24'b0};
// end
// else
// begin
// Out_im=Before_Voter_im;
// end
// end
//else
// begin
// Out_im<=Before_Voter_im;

 92

// end
//
//end
Out0_real=(Before_Voter_real[0]==Before_Voter_real[1])?Before_Voter_real[0]:Before
_Voter_real[1];
//assign Out_real=(Out0_real==Before_Voter_real[2])?Out0_real:Before_Voter_real[0];
//assign
Out0_im=(Before_Voter_im[0]==Before_Voter_im[1])?Before_Voter_im[0]:Before_Vo
ter_im[1];
//assign Out_im=(Out0_im==Before_Voter_im[2])?Out0_im:Before_Voter_im[0];
endmodule

C2.III. BF—Delayer

`timescale 1ns / 1ps
module Delayer_RPR(In_real,In_im,Out_real,Out_im,clk);
input clk;
input [13:0] In_real,In_im;
output reg [13:0] Out_real,Out_im;

reg [13:0] Real_reg_0,Im_reg_0;
reg [13:0] Real_reg_1,Im_reg_1;
reg [13:0] Real_reg_2,Im_reg_2;
reg [13:0] Real_reg_3,Im_reg_3;
reg [13:0] Real_reg_4,Im_reg_4;
reg [13:0] Real_reg_5,Im_reg_5;
reg [13:0] Real_reg_6,Im_reg_6;

// This delayer is for the BF outputs due to the fact that the use of 8/32 or 14/32 degree of
RPR result a decrease in use of multipliers, CSA and CLAH and in the decrease of the
needed pipelines. So I have to replace the loss of the 6 "cutted" pipelines with 6 registers
in order my FFT to be synchronous.
always @(posedge clk)
begin
 Real_reg_0 <= In_real;
 Im_reg_0 <= In_im;

end

always @(posedge clk)
begin
 Real_reg_1 <= Real_reg_0;
 Im_reg_1 <= Im_reg_0;

end

 93

always @(posedge clk)
begin
 Real_reg_2 <= Real_reg_1;
 Im_reg_2 <= Im_reg_1;

end

always @(posedge clk)
begin
 Real_reg_3 <= Real_reg_2;
 Im_reg_3 <= Im_reg_2;

end

always @(posedge clk)
begin
 Real_reg_4 <= Real_reg_3;
 Im_reg_4 <= Im_reg_3;

end

always @(posedge clk)
begin
 Real_reg_5 <= Real_reg_4;
 Im_reg_5 <= Im_reg_4;

end
always @(posedge clk)
begin
 Out_real <= Real_reg_5;
 Out_im <= Im_reg_5;
end
endmodule

C2.IV. BF——Multiplier

`timescale 1ns/100ps
// multiplier RPR Edition 1
module mult_14x14_edit1_RPR(clk,reset,clk_enable,Ainput,Binput,Sumfinal);

input [13:0] Ainput,Binput;
input clk,clk_enable,reset;
output reg [13:0] Sumfinal;
reg [17:0] Ain,Bin;
reg [17:0] Ain1,Bin1;

 94

wire [17:0] Ain0,Bin0;

assign Ain0=Ainput[13]?{4'b1111,Ainput}:{4'b0000,Ainput};
assign Bin0=Binput[13]?{4'b1111,Binput}:{4'b0000,Binput};
wire [35:0] telos;

always @(posedge clk)
 begin
 Ain1<=Ain0;
 Bin1<=Bin0;
 end

MULT18X18S A0B0 (.A(Ain1),
 .B(Bin1),
 .C(clk),
 .CE(clk_enable),
 .R(reset),
 .P(telos));

always @(posedge clk)
begin
Sumfinal<=telos[25:12];
end
endmodule

 95

APPENDIX D. MATLAB FILE

This appendix contains the MATLAB file created to verify the results from

Xilinx’s RPR module. This file has multiple functions such as:

 Generates input signals, converts them into two’s complement fixed-point binary
numbers and exports them into files for use in Modelsim.

 Imports the generated output files from Modelsim and converts them into
decimal.

 Generates two different algorithms for calculating the FFT. It uses the
MATLAB’s build-in FFT function and a behavioral simulation in MATLAB,
based on the implemented Xilinx design. Simultaneously, it loads the data from
Xilinx that is generated by the Modelsim simulator program.

 Generates three different graphical figures based on the three set of data.

 Calculates the bounds for the expected precise calculations error and for the
radiation imported errors.

 Shows the output results for every stage of the FFT and compares the three sets of
data, enabling the user to inspect the impact of radiation in the whole process of
the FFT algorithm.

D1. MAIN FILE

% It works perfectly for |Inputs|<2^(-9).
% It works with the later RPR designs due to the 3bit scale down of
% the inputs at the beginning of each stage.

% Radix 4 fft N=64 point
% programma creates twiddle for N=64 bit
% fixed point two's complement
% 30 LSB are the floating.
% sample_signal_real and sample_signal_image contains the input
equation

% this program computes the FFT Radix4 N=64point in shape geometry,
% reversing bit in every stage,compares the result of the calculations
to
% between my Matlab FFT design and Verilog Design.
% Athanasios Gavros 15/07/2010
% edition 1.3a
% As an input signal : real part :'equationA', imaginary part
:'equationB'.
% In Phase Compare between my FFT and Verilog, you are going to observe

 96

% sometimes huge difference. But that is not entirely truth. Due to
small
% numbers (10^(-13) etc ..) that should be accepted equal to zero, any
% flunctuation can cause wrong results. That why we compare the image
and
% real part of the two outputs and if the difference is smaller than
% 9.3*(10^-7) , Matlab is printing the message
Phase_Checking='Correct'. "

%Beware that the results of Verilog are not Bit Reversed on the final
%stage. We are reversing the Address of the Output , but here in
Matlab, we
%are doing this final bit reversal in order to compare our final
results
%with the results of build in fft.
clear all;
close all;
colordef white;
format long
pinakas0=cell(64,64);
pinakas=cell(64,64);
Binary_to_decimal=cell(1,64);
clear cc;
adder=0;
N=64; %point
F1=[0:N-1]/N;

ert1=0;
ert2=0;
%%------------------
% Input signal
for n=0:1:63
equationA(n+1)=0.5*cos(2*pi*n/64)+0.3*cos(2*pi*n/9);
equationB(n+1)=0.4*sin(2*pi*n/16)+0.1*sin(2*pi*n/14)-0.3*cos(2*pi*n/3);
end

% RANDOM signal
equationA(48)=0.15;
equationA(10)=0.11;
equationA(14)=0.05;
equationA(17)=0.5;
equationA(27)=-0.15;
equationA(20)=0.5;
equationA(21)=0.15;
equationA(31)=0.17;
equationA(41)=0.19;
equationA(51)=0;
equationB(54)=0.16;
equationB(45)=-0.2;
equationB(41)=-0.7;
equationB(11)=0.9;
equationB(12)=0.9;
equationB(24)=0.25;
%---
if (n>58)

 97

 equationA(n+1)=0.5;%end
end
for counter=1:1:64
 sample_signal_real(counter)= double(equationA(counter));%0.0001;
 sample_signal_image(counter)= double(equationB(counter));%0.0001;
end
%------------------------

%%twiddle
for mm = 0:1:63
 %radix-4
 twiddl(mm+1)=double(exp(-2*pi*j*mm*1/64));
 Wn_real(mm+1)=(real(twiddl(mm+1)));%cos(2*pi*mm/64);
 Wn_im(mm+1)=(-imag(twiddl(mm+1)));%sin(2*pi*mm/64);

end

%% Stage1
for p=1:1:16
 for i=0:16:48
 if (i==0)
 Ain_real=sample_signal_real(i+p);
 Ain_im= sample_signal_image(i+p);
 end
 if (i==16)
 Bin_real=sample_signal_real(i+p);
 Bin_im= sample_signal_image(i+p);
 end
 if (i==32)
 Cin_real=sample_signal_real(i+p);
 Cin_im= sample_signal_image(i+p);
 end
 if (i==48)
 Din_real=sample_signal_real(i+p);
 Din_im= sample_signal_image(i+p);
 end
 ert1=ert1+1;
 check1(ert1)=i+p;
 end
 factor1 = Ain_real+Bin_im-Cin_real-Din_im;
 factor2 = Ain_real-Bin_real+Cin_real-Din_real;
 factor3 = Ain_real-Bin_im-Cin_real+Din_im;
 factor4 = Ain_im-Bin_real-Cin_im+Din_real;
 factor5 = Ain_im-Bin_im+Cin_im-Din_im;
 factor6 = Ain_im+Bin_real-Cin_im-Din_real;

 Areal_stage1(0+p) =Ain_real+Bin_real+Cin_real+Din_real;
 Aim_stage1(0+p) =Ain_im+Bin_im+Cin_im+Din_im;

 Areal_stage1(16+p) = double(factor1*Wn_real(p) +
factor4*Wn_im(p));% ena error sto Wn (p+1)!!! pantoy xaos
 Aim_stage1(16+p) = double(factor4*Wn_real(p) -
factor1*Wn_im(p));

 98

 Areal_stage1(32+p) = double(factor2*Wn_real(2*(p-1)+1) +
factor5*Wn_im(2*(p-1)+1));
 Aim_stage1(32+p) = double(factor5*Wn_real(2*(p-1)+1) -
factor2*Wn_im(2*(p-1)+1));
 Areal_stage1(48+p) = double(factor3*Wn_real(3*(p-1)+1) +
factor6*Wn_im(3*(p-1)+1));
 Aim_stage1(48+p) = double(factor6*Wn_real(3*(p-1)+1) -
factor3*Wn_im(3*(p-1)+1));

end
%--------------------------
% bit reversal of the Radix4
% example 003-> 300

ttt=0;
 e2=0;
for v2=1:1:4
for p2=0:4:12
 for i2=0:16:48
 ttt=ttt+1;

 k22(ttt)=v2+p2+i2;
 end
end
end

for i=1:1:64
Aim_stage1_r(k22(i))=Aim_stage1(i);
Areal_stage1_r(k22(i))=Areal_stage1(i);
end

ttt=0;
 e2=0;
for v2=0:16:48
for p2=1:1:4
 for i2=0:4:12
 ttt=ttt+1;

 k22a(ttt)=v2+p2+i2;
 end
end
end

for qw=1:1:64
Aim_stage1_rr(k22a(qw))=Aim_stage1((qw));
Areal_stage1_rr(k22a(qw))=Areal_stage1((qw));
end
%%---------------------------

 99

%% Stage 2
% Input signal
e2=0;
for v2=0:16:48
for p2=1:1:4
 for i2=0:4:12
 if (i2==0)
 Ain_real2=Areal_stage1_r(i2+p2+v2);
 Ain_im2= Aim_stage1_r(i2+p2+v2);
 end
 if (i2==4)
 Bin_real2=Areal_stage1_r(i2+p2+v2);
 Bin_im2= Aim_stage1_r(i2+p2+v2);
 end
 if (i2==8)
 Cin_real2=Areal_stage1_r(i2+p2+v2);
 Cin_im2= Aim_stage1_r(i2+p2+v2);
 end
 if (i2==12)
 Din_real2=Areal_stage1_r(i2+p2+v2);
 Din_im2= Aim_stage1_r(i2+p2+v2);
 end
 v2+p2+i2; % test milestone
 end

 factor1_stage2 = Ain_real2+Bin_im2-Cin_real2-Din_im2;
 factor2_stage2 = Ain_real2-Bin_real2+Cin_real2-Din_real2;
 factor3_stage2 = Ain_real2-Bin_im2-Cin_real2+Din_im2;
 factor4_stage2 = Ain_im2-Bin_real2-Cin_im2+Din_real2;
 factor5_stage2 = Ain_im2-Bin_im2+Cin_im2-Din_im2;
 factor6_stage2 = Ain_im2+Bin_real2-Cin_im2-Din_real2;

 Areal_stage2(v2+p2)
=Ain_real2+Bin_real2+Cin_real2+Din_real2;
 Aim_stage2(v2+p2) =Ain_im2+Bin_im2+Cin_im2+Din_im2;

 Areal_stage2(v2+p2+4) =
double(factor1_stage2*Wn_real(1+e2*4) + factor4_stage2*Wn_im(1+e2*4));
 Aim_stage2(v2+p2+4) =
double(factor4_stage2*Wn_real(1+e2*4) - factor1_stage2*Wn_im(1+e2*4));
 Areal_stage2(v2+p2+8) =
double(factor2_stage2*Wn_real(1+e2*8) + factor5_stage2*Wn_im(1+e2*8));
 Aim_stage2(v2+p2+8) =
double(factor5_stage2*Wn_real(1+e2*8) - factor2_stage2*Wn_im(1+e2*8));
 Areal_stage2(v2+p2+12) =
double(factor3_stage2*Wn_real(1+e2*12) +
factor6_stage2*Wn_im(1+e2*12));
 Aim_stage2(v2+p2+12) =
double(factor6_stage2*Wn_real(1+e2*12) -
factor3_stage2*Wn_im(1+e2*12));

 1+e2*4;1+e2*8;1+e2*12 ;%test milestone
end

 100

e2=e2+1;
end
%--------------------------
% bit reversal of the Radix4
% example 003-> 300

ttt=0;
 e2=0;
for v2=1:1:4
for p2=0:4:12
 for i2=0:16:48
 ttt=ttt+1;

 k22(ttt)=v2+p2+i2;
 end
end
end
for i=1:1:64
Aim_stage2_r(k22(i))=Aim_stage2(i);
Areal_stage2_r(k22(i))=Areal_stage2(i);
end
%%---------------------------
%% Stage 3
% Input signal

for p3=0:4:60
 for i3=1:1:4
 if (i3==1)
 Ain_real3=Areal_stage2_r(i3+p3);
 Ain_im3= Aim_stage2_r(i3+p3);
 end
 if (i3==2)
 Bin_real3=Areal_stage2_r(i3+p3);
 Bin_im3= Aim_stage2_r(i3+p3);
 end
 if (i3==3)
 Cin_real3=Areal_stage2_r(i3+p3);
 Cin_im3= Aim_stage2_r(i3+p3);
 end
 if (i3==4)
 Din_real3=Areal_stage2_r(i3+p3);
 Din_im3= Aim_stage2_r(i3+p3);
 end
 oo1=p3+i3; % test milestone
 end

 factor1_stage3 = Ain_real3+Bin_im3-Cin_real3-Din_im3;
 factor2_stage3 = Ain_real3-Bin_real3+Cin_real3-Din_real3;
 factor3_stage3 = Ain_real3-Bin_im3-Cin_real3+Din_im3;
 factor4_stage3 = Ain_im3-Bin_real3-Cin_im3+Din_real3;
 factor5_stage3 = Ain_im3-Bin_im3+Cin_im3-Din_im3;
 factor6_stage3 = Ain_im3+Bin_real3-Cin_im3-Din_real3;
 Areal_stage3(p3+1)
=Ain_real3+Bin_real3+Cin_real3+Din_real3;
 Aim_stage3(p3+1) =Ain_im3+Bin_im3+Cin_im3+Din_im3;

 101

 Areal_stage3(p3+2) = double(factor1_stage3*Wn_real(1) +
factor4_stage3*Wn_im(1));
 Aim_stage3(p3+2) = double(factor4_stage3*Wn_real(1) -
factor1_stage3*Wn_im(1));
 Areal_stage3(p3+3) = double(factor2_stage3*Wn_real(1) +
factor5_stage3*Wn_im(1));
 Aim_stage3(p3+3) = double(factor5_stage3*Wn_real(1) -
factor2_stage3*Wn_im(1));
 Areal_stage3(p3+4) = double(factor3_stage3*Wn_real(1) +
factor6_stage3*Wn_im(1));
 Aim_stage3(p3+4) = double(factor6_stage3*Wn_real(1) -
factor3_stage3*Wn_im(1));

end
%--------------------------
% bit reversal of the Radix4
% example 003-> 300

ttt=0;
 e2=0;
for v2=1:1:4
for p2=0:4:12
 for i2=0:16:48
 ttt=ttt+1;

 k22(ttt)=v2+p2+i2;
 end
end
end

for i=1:1:64
%if (Aim_stage1(i)<10^(-10))
% Aim_stage1_r(k22(i))=0;
%else
Aim_stage3_r(k22(i))=Aim_stage3(i);

Areal_stage3_r(k22(i))=Areal_stage3(i);

end
%% ---------------------------
figure (1);

X1(1:N)=sqrt(Aim_stage3(1:N).^2+Areal_stage3(1:N).^2);
subplot (8,1,7)
plot (F1,X1,'-x')
grid
ylabel('Magnitude')
title ('Radix 4 FFT N=64 my design (BEFORE REVERSED BIT)');

X1(1:N)=sqrt(Aim_stage3_r(1:N).^2+Areal_stage3_r(1:N).^2);
subplot (8,1,8)

 102

plot (F1,X1,'-x')
grid
ylabel('Magnitude')
title ('Radix 4 FFT N=64 my design (AFTER REVERSED BIT)');

subplot (8,1,1)
plot ([0:63],Areal_stage1,'-o');
title ('My Matlab FFT design - Radix 4, N=64, in shape geometry,
reversing bit in each stage - The following plot is Stage1 real');
axis auto ;

subplot (8,1,2)
plot ([0:63],Aim_stage1,'-o');
title ('Stage1 im');
axis auto ;

axis auto ;
subplot (8,1,3)
plot ([0:63],Areal_stage2,'-o');
title ('Stage2 real');
axis auto ;

subplot (8,1,4)
plot ([0:63],Aim_stage2,'-o');
title ('Stage2 im');
axis auto ;

subplot (8,1,5)
plot ([0:63],Areal_stage3,'-o');
title ('Stage3 real');
axis auto ;

subplot (8,1,6)
plot ([0:63],Aim_stage3,'-o');
title ('Stage3 im');
axis auto ;
%---

figure (2)
X31(1:N)=sqrt(Aim_stage1_r(1:N).^2+Areal_stage1_r(1:N).^2);
subplot (3,1,1)
plot (F1,X31,'-x')
ylabel('Magnitude');
grid
title ('The magnitude result of each stage of my FFT desing in Matlab-
This plot is for Magnitude of stage1');

X32(1:N)=sqrt(Aim_stage2(1:N).^2+Areal_stage2(1:N).^2);
subplot (3,1,2)
plot (F1,X32,'-x')
grid
ylabel('Magnitude')
title ('Magnitude of stage2');

 103

X33(1:N)=sqrt(Aim_stage3(1:N).^2+Areal_stage3(1:N).^2);
subplot (3,1,3)
plot (F1,X33,'-x')
grid
ylabel('Magnitude')
title ('Magnitude of stage3');

%% saving the choosen equation into binary file named
Input_from_Matlab_real.in & Input_from_Matlab_image.in

%--------------------------
% decimal to binary
% Accepts decimal numbers between -1 < Number < 1
%and transform them into (2bit integer and 30 bit floating)
% equationA is the input decimal number variable.
% pinakas is the output binary number
% handles 64 decimal number- for the 64 point data of FFT real and
imagery

for number3=1:1:2
 if (number3==1)
 Realoo(1:64)=sample_signal_image(1:64);
 else
 Realoo(1:64)=sample_signal_real(1:64);
 end

for ax=1:1:64
if (Realoo(ax)==1)
 pinakas{ax,1}=0;
 pinakas{ax,2}=1;
 for tr=3:1:64
 pinakas{ax,tr}=0;
 end
end
if (Realoo(ax)==0)
 for i=1:1:64
 pinakas{ax,i}=0;
 telos=1;
 end
end
if (Realoo(ax)==-1)
 pinakas{ax,1}=1;
 pinakas{ax,2}=1;
 for tr=3:1:64
 pinakas{ax,tr}=0;
 end
end
if (Realoo(ax)<1)&(Realoo(ax)>0)
 pinakas{ax,1}=0;
 pinakas{ax,2}=0;
 zhtoymeno5=Realoo(ax);

 104

 for tr=3:1:64
 zhtoymeno5=zhtoymeno5*2;
 if (zhtoymeno5>=1)
 zhtoymeno5=zhtoymeno5-1;
 pinakas{ax,tr}=1;
 else
 pinakas{ax,tr}=0;
 end
 end

end
if (Realoo(ax)<0)&(Realoo(ax)>-1)
 pinakas{ax,1}=1;
 pinakas{ax,2}=1;
 zhtoymeno5=1+Realoo(ax);
 for tr=3:1:64
 zhtoymeno5=zhtoymeno5*2;
 if (zhtoymeno5>=1)
 zhtoymeno5=zhtoymeno5-1;
 pinakas{ax,tr}=1;
 else
 pinakas{ax,tr}=0;
 end
 end

end
end
Decimal_to_binary=[];
for i=1:1:64
for e=1:1:32
 Decimal_to_binary=[Decimal_to_binary pinakas{i,e}]; %concatenate
end

 if (number3==1) binary_result_to_Verilog_image = Decimal_to_binary ;
% contains the decimal result of our Verilog Design (image)
 else binary_result_to_Verilog_real = Decimal_to_binary ; % contains
the decimal result of our Verilog Design (real)
 end

 end
end
% it stores the 32bit number in line without any ; or any other
distinction
fid22 = fopen('Input_from_Matlab_image.in','w');
fprintf(fid22,'%u',binary_result_to_Verilog_image);
fclose(fid22)
fid122 = fopen('Input_from_Matlab_real.in','w');
fprintf(fid122,'%u',binary_result_to_Verilog_real);
fclose(fid122)
%% Converting binary results from verilog modelsim files into decimal
[decimal_result_of_Verilog_real,decimal_result_of_Verilog_image]=binary
_to_decimal('TB_data_file_Output_image.out','TB_data_file_Output_real.o
ut',2^9);

 105

[decimal_result_of_Verilog_real_stage1,decimal_result_of_Verilog_image_
stage1]=binary_to_decimal('TB_data_file_stage1_image.out','TB_data_file
_stage1_real.out',2^3);
[decimal_result_of_Verilog_real_stage2,decimal_result_of_Verilog_image_
stage2]=binary_to_decimal('TB_data_file_stage2_image.out','TB_data_file
_stage2_real.out',2^6);
%% figure that contains the fft and my Verilog fft
figure (5);
as(1:64)=0.0001;
Xin_real=(sample_signal_real);
subplot (4,1,1)
plot (F1,Xin_real,'-o')
title ('Matlabs Input Function Real');
axis auto ;

Xin_image=(sample_signal_image);
subplot (4,1,2)
plot (F1,Xin_image,'-o')
title ('Matlabs Input Function Image');
axis auto ;
X2=abs(fft(sample_signal_real+j*sample_signal_image,N));
subplot (4,1,3)
plot (F1,X2,'-x')
title ('FFT N=64 - Matlabs Ready Function');
axis auto ;

Result_Verilog(1:N)=double
(sqrt(decimal_result_of_Verilog_real(1:N).^2+decimal_result_of_Verilog_
image(1:N).^2));

subplot (4,1,4)
plot (F1,Result_Verilog,'-x')
grid
title ('Radix 4 FFT N=64 VERILOG output before the proper reverse of
the final stage - As it comes from the file');
axis auto;
%---
%% Helpfull reversing of verilog files stages

%--------------------------
% bit reversal of the Radix4
% example 003-> 300

ttt=0;
 e2=0;
for v2=1:1:4
for p2=0:4:12
 for i2=0:16:48
 ttt=ttt+1;

 k22(ttt)=v2+p2+i2;
 end
end

 106

end
for i=1:1:64
%if (Aim_stage1(i)<10^(-10))
% Aim_stage1_r(k22(i))=0;
%else
koykoyi(k22(i))=decimal_result_of_Verilog_image(i);

koykoyr(k22(i))=decimal_result_of_Verilog_real(i);
end

ee1(1:64,3)=koykoyr+j*koykoyi;%metalaksh
FFT_Verilog_Final_Magn(1:N)= sqrt(koykoyr(1:N).^2+koykoyi(1:N).^2);
FFT_Verilog_Final_Angle(1:N)=unwrap(angle(koykoyr+j*koykoyi));

figure (12)
plot (F1,FFT_Verilog_Final_Magn,'-x');
title ('My Verilog FFT Stage Final Output');
ylabel('Magnitude');
axis auto ;
%% Helpfull reversing of verilog files stage 2

ttt1=0;
 e21=0;

for p21=0:16:48
 for v21=1:1:4
 for i21=0:4:12
 ttt1=ttt1+1;

 k221(ttt1)=v21+p21+i21;
 end
end
end

for i1=1:1:64
%if (Aim_stage1(i)<10^(-10))
% Aim_stage1_r(k22(i))=0;
%else
Aim_stage2_rr(k221(i1))=Aim_stage2(i1);
Areal_stage2_rr(k221(i1))=Areal_stage2(i1);
end
%% The magnitude result of each stage of my FFT desing in Matlab
%compared to the magnitude result of each stage from Verilog(after
being
%radiated) (not be reversed)

for qw=1:1:64
decimal_result_of_Verilog_image_stage1_r(k22(qw))=decimal_result_of_Ver
ilog_image_stage1((qw));
decimal_result_of_Verilog_real_stage1_r(k22(qw))=decimal_result_of_Veri
log_real_stage1((qw));
end
%for qw=1:1:64
%decimal_result_of_Verilog_image_stage2_r((qw))=Aim_stage2(k22(qw));

 107

%decimal_result_of_Verilog_real_stage2_r((qw))=Areal_stage2(k22(qw));
%end

%for qw=1:1:64
%decimal_result_of_Verilog_image_r((qw))=Aim_stage3(k22(qw));
%decimal_result_of_Verilog_real_r((qw))=Areal_stage3(k22(qw));
%end
figure (12)
X31(1:N)=sqrt(Aim_stage1_rr(1:N).^2+Areal_stage1_rr(1:N).^2);
AA21(1:N)=sqrt(decimal_result_of_Verilog_real_stage1_r(1:N).^2+decimal_
result_of_Verilog_image_stage1_r(1:N).^2);
subplot (3,1,1)
plot (F1,X31,'-x',F1,AA21,'ro')
ylabel('Magnitude');
grid
title ('The magnitude result of each stage of my FFT desing in Matlab
compared to the magnitude result of each stage from Verilog(after being
radiated)(not reversed)- This plot is for Magnitude of stage1');
legend ('FFT expected value','FFT Radiated Value');

X32(1:N)=sqrt(Aim_stage2_rr(1:N).^2+Areal_stage2_rr(1:N).^2);
AA22(1:N)=sqrt(decimal_result_of_Verilog_real_stage2(1:N).^2+decimal_re
sult_of_Verilog_image_stage2(1:N).^2);
subplot (3,1,2)
plot (F1,X32,'-x',F1,AA22,'ro')
grid
ylabel('Magnitude')
title ('Magnitude of stage2');

X33(1:N)=sqrt(Aim_stage3(1:N).^2+Areal_stage3(1:N).^2);
AA23(1:N)=sqrt(decimal_result_of_Verilog_image(1:N).^2+decimal_result_o
f_Verilog_real(1:N).^2);
subplot (3,1,3)
plot (F1,X33,'-x',F1,AA23,'ro')
grid
ylabel('Magnitude')
title ('Magnitude of stage3');

figure (14)
%%colordef black
difference_stage1_values=X31(1:N)-AA21(1:N);
subplot (3,1,1)
plot (F1,difference_stage1_values,'-x')
hold on
plot (F1,2^(-24.5),'+r',F1,-2^(-24.5),'+r')
hold off
ylabel('Difference in stage1 values of figure 12');
grid
legend ('Difference','Non Radiated Expected Limits');
difference_stage2_values=X32(1:N)-AA22(1:N);
subplot (3,1,2)
plot (F1,difference_stage2_values,'-x')
hold on
plot (F1,2^(-21.5),'+r',F1,-2^(-21.5),'+r')
hold off

 108

grid
ylabel('Difference in stage2 values of figure 12');
difference_stage3_values=X33(1:N)-AA23(1:N);
subplot (3,1,3)
plot (F1,difference_stage3_values,'-x')
hold on
plot (F1,2^(-18.5),'+r',F1,-2^(-18.5),'+r')
hold off
grid
ylabel('Difference in stage3 values of figure 12');

figure (15)
%%colordef black
difference_stage1_values=X31(1:N)-AA21(1:N);
subplot (3,1,1)
plot (F1,difference_stage1_values,'-x')
hold on
plot (F1,2^(-6.5),'+r',F1,-2^(-6.5),'+r')
hold off
ylabel('Difference in stage1 values of figure 12');
grid
legend ('Difference','Radiated Expected Limits');
difference_stage2_values=X32(1:N)-AA22(1:N);
subplot (3,1,2)
plot (F1,difference_stage2_values,'-x')
hold on
plot (F1,2^(-3.5),'+r',F1,-2^(-3.5),'+r')
hold off
grid
ylabel('Difference in stage2 values of figure 12');
difference_stage3_values=X33(1:N)-AA23(1:N);
subplot (3,1,3)
plot (F1,difference_stage3_values,'-x')
hold on
plot (F1,2^(-.5),'+r',F1,-2^(-.5),'+r')
hold off
grid
ylabel('Difference in stage3 values of figure 12');
%--------------
%% Checking the Phase
my_Matlab_fft(1:N)=sqrt(Aim_stage3_r(1:N).^2+Areal_stage3_r(1:N).^2);
%metalaksh
Angle_of_my_Matlab_fft=
unwrap(angle(Areal_stage3_r+j*Aim_stage3_r));%metalaksh
fft_build_in_matlab=abs(fft(sample_signal_real+j*sample_signal_image,N)
);
Angle_of_build_in_fft=
unwrap(angle(fft(sample_signal_real+j*sample_signal_image,N)));
ee1(1:64,1)=fft(sample_signal_real(1:64)+j*sample_signal_image(1:64));
ee1(1:64,2)=Areal_stage3_r+j*Aim_stage3_r;%metalaksh
pinakasA1=real (ee1(:,1));
pinakasA2=imag (ee1(:,1));
pinakasB1=real (ee1(:,3));
pinakasB2=imag (ee1(:,3));
Check_phase1=abs(pinakasA1-pinakasB1);

 109

Check_phase2=abs(pinakasA2-pinakasB2);
figure(9)
plot (real(ee1(:,1)),[1:64],'xr',real(ee1(:,3)),[1:64],'ob');
title ('Real results Difference');
figure (10)
plot (imag(ee1(:,1)),[1:64],'xr',imag(ee1(:,3)),[1:64],'ob');
title ('Image results Difference');

figure (3)
subplot (6,1,1)
plot (F1,FFT_Verilog_Final_Magn,'-x');
title ('Radix 4 FFT N=64 - My Verilog FFT');
ylabel('Magnitude');
axis auto ;
subplot (6,1,2)
plot (F1,my_Matlab_fft,'-x')
grid
title ('Radix 4 FFT N=64 my Matlab design');
ylabel('Magnitude')
subplot (6,1,4)
plot (F1,FFT_Verilog_Final_Angle,'-x');
title ('Angle of the my Verilog fft ');
ylabel('Phase')
subplot (6,1,5)
plot (F1,Angle_of_my_Matlab_fft,'-x');
title ('Angle of my Matlab fft');
ylabel('Phase')
subplot (6,1,3)
plot (F1,fft_build_in_matlab,'-x');
title ('FFT N=64 - Matlabs Build In Function');
ylabel('Magnitude');
axis auto ;
subplot (6,1,6)
plot (F1,Angle_of_build_in_fft,'-x');
title ('Angle of the build in fft ');
ylabel('Phase')
%--
%comparing My Matlab Function FFT with FFT Verilog (comparing
%the magnitude and the phase)
figure (4)
for i=1:1:64
 if (my_Matlab_fft<10^12)
 end
end
Amagn=abs(my_Matlab_fft-FFT_Verilog_Final_Magn);
Aphase=abs(Angle_of_my_Matlab_fft-FFT_Verilog_Final_Angle);
if (single(Check_phase1)<=(2^-1))&(single(Check_phase2)<=(2^-
1))%metalaksh
 Phase_and_Magnitude_Checking='Correct !!'
else
 Phase_and_Magnitude_Checking='Failed !!'
end

 110

plot (F1,Amagn,'+g',F1,Aphase,'or');
title ('Difference in Magnitude or in Phase between build in FFT and my
Matlab FFT ');
axis auto ;
%axis ([0 1 0 (10^(-8))]);%metalaksh
xlabel('N=64')
ylabel('Absolute value')
legend('Magnitude Difference','Phase Difference');
figure (13)
subplot(3,2,1),plot (F1,Xin_real,'-o')
title ('Matlabs Input Function Real');
axis auto ;
subplot (3,2,2),plot (F1,Xin_image,'-o')
title ('Matlabs Input Function Image');
axis auto ;
subplot (3,2,[5 6])
difference_in_output_a=fft_build_in_matlab-FFT_Verilog_Final_Magn;
plot (F1,difference_in_output_a,'xr');
ylabel('Detailed Difference in Magnitude of the Output')

subplot (3,2,[3 4])
plot (F1,fft_build_in_matlab,'--gs',F1,FFT_Verilog_Final_Magn,'--+');
ylabel('Magnitude of the Output')
xlabel('N=64 samples')
legend ('fft build in matlab','FFT Verilog Final Magn (Post-Route
Simulation)');
hold on
for i=1:1:64
 if (abs(difference_in_output_a(i))>3.8*10^(-6))
 plot ((i-1)/64,FFT_Verilog_Final_Magn(i),'ro')
 legend ('fft build in matlab','FFT Verilog Final Magn (Post-
Route Simulation)','Identified Errors');
 end
end
hold off

Real_diff=Check_phase1(1);
Image_diff=Check_phase2(i);
for i=1:1:64
 if (Real_diff<Check_phase1(i))
 Real_diff=Check_phase1(i);
 end
 if (Image_diff<Check_phase2(i))
 Image_diff=Check_phase2(i);
 end

end
if (Real_diff>Image_diff)
 Major_diff=Real_diff;
else
 Major_diff=Image_diff;
end

 111

if (single(Major_diff)<=(2^(-1)))
 title ('FFT Comparing Check =Correct! Your Verilog FFT works at 167
MHz');
else
 title ('FFT Comparing Check =Wrong! Your Verilog FFT does not
work.');
end
Major_diff

%--
%--
% binary to decimal
% Accepts binary numbers between 01.000..00 - 11.111...11
%(2bit integer and 30 bit floating)
% ap is the input binary number variable.(be careful, there is no
decimal
% point in the input binary numbers!
% result1 is the output decimal number

% the following part loads the 32bit number from Verilog that are in
line without any ;
% or any other distinction (only a space between the numbers)
% "transformed_bin_to_dec" is a 32bit 64 cell matrix that contains the
binary
% output of verilog simulation file
function
[decimal_result_of_Verilog_real,decimal_result_of_Verilog_image]=binary
_to_decimal(TB_data_file_Output_image,TB_data_file_Output_real,multipl)

btd = fopen(TB_data_file_Output_image,'r');
Binary_to_decimal_image=fscanf(btd,'%c');
%Binary_to_decimal=fread(btd, '*uint');%[32, 32], '*uint');
%a33=Binary_to_decimal.';
fclose(btd)
for i=1:1:64
%for eqq=0:1:31
 [token, Binary_to_decimal_image] = strtok(Binary_to_decimal_image);
 %transformed_bin_to_dec{i,1:32}=sscanf (token,'%c');
 transformed_bin_to_dec_image{i}=token;
 %Binary_to_decimal{1,1:32};
 % transformed_bin_to_dec(i)=Binary_to_decimal(1+31*eqq:32+31*eqq);
%end
end

btd1 = fopen(TB_data_file_Output_real,'r');
Binary_to_decimal_real=fscanf(btd1,'%c');

fclose(btd1)
for i=1:1:64
%for eqq=0:1:31
 [token, Binary_to_decimal_real] = strtok(Binary_to_decimal_real);
 %transformed_bin_to_dec{i,1:32}=sscanf (token,'%c');

 112

 transformed_bin_to_dec_real{i}=token;
 %Binary_to_decimal{1,1:32};
 % transformed_bin_to_dec(i)=Binary_to_decimal(1+31*eqq:32+31*eqq);
%end
end
%--

for number2=1:1:2
for oeo=1:1:64
 if (number2==1)
 ap=transformed_bin_to_dec_image{oeo};
 else
 ap=transformed_bin_to_dec_real{oeo};
 end

%ap='00111000000000000000000000000000';
%ap='00000010001000011001011001010010';
%bin2dec (ap{3:32})/2^30
zhtoymeno1=1;
if (ap(1:2)=='01')
 result1=1;
end

if (ap(1:2)=='00')
 result1=0;
 for e1=3:1:32
 if (ap(e1))=='1'
 num1=1;
 else
 num1=0;
 end

 zhtoymeno1=(zhtoymeno1)/2;
 result1=num1*zhtoymeno1+result1;
 end
end

if (ap(1:2)=='11')
 result1=-1;
 for e1=3:1:32
 if (ap(e1))=='1'
 num1=1;
 else
 num1=0;
 end
 zhtoymeno1=(zhtoymeno1)/2;
 result1=result1+num1*zhtoymeno1;
 end
end
% in the following calculation I multiply the final result by 2^9 due
to
% 3bit step down on each stage of the FFT =>(2^3)*(2^3)*(2^3)=2^9

 113

 if (number2==1) decimal_result_of_Verilog_image (oeo)= result1*multipl
; % contains the decimal result of our Verilog Design (image)
 else decimal_result_of_Verilog_real (oeo)= result1*multipl ; %
contains the decimal result of our Verilog Design (real)
 end

 end

end

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

LIST OF REFERENCES

[1] Joshua D. Snodgrass, “Low-Power Tolerance for Spacecraft FPGA-based
Numerical Computing”, Dissertation, Department of Electrical and Computer
Engineering, Naval Postgraduate School, Monterey, California, September 2006.

[2] L. D. Edmonds, “An Introduction to Space Radiation Effects on
Microelectronics” JPL publication 00-06, Jet Propulsion Laboratory, California
Institute of Technology Pasadena, California, May 2000.

[3] Herschel Loomis and Alan Ross, “Configurable Fault-Tolerant Architectures for

Reliable Space-Based Computing (CFTP),” Naval Postgraduate School Research
Proposal to the Secretary of the Air Force, March 2010.

[4] Margaret A. Sullivan, “Reduced Precision Redundancy applied to arithmetic

operations in field Programmable Gate Arrays for satellite control and sensor
systems”, Master’s Thesis, Department of Electrical and Computer Engineering,
Department of Mechanical and Astronautical Engineering, Naval Postgraduate
School, Monterey, California, December 2008.

[5] Nikolaos Gkikas, “Architecture for the Creation in Software, FFT /IFFT for

Wireless Networks”, Master’s Thesis, Department of Physics, University of
Ioannina, Patra, Greece, December 2005.

[6] J. W. Cooley and J.W. Tukey, “An Algorithm for the Machine Calculation of

Complex Fourier Series”, Math of Comp., Vol.19, No.90, pp 297-301, April
1965.

[7] Charles Wu, “Implementing the Radix-4 Decimation in Frequency (DIF) Fast

Fourier Transform (FFT) Algorithm Using a TMS320C80 DSP”, Application
report: SPRA152, SC Sales & Marketing – TI Taiwan, Digital signal Processing
Solutions, January 1998, Texas Instruments.

[8] Marianne Delphin, “Implementing the Radix-4 FFT Algorithm Using the ST120

DSP”, application note AN1381, October 2001, STMicroelectronics.

[9] Zhijan Sun, Xuemei Liu and Zhongxing Ji, “The Design of Radix-4 FFT by

FPGA”, College of Science, Qingdao Technological University , Qingdao,
Shandong, 266033, China.

[10] Saad Bouguezel,M. Omair Ahmad, “Improved Radix-4 and Radix-8 FFT

Algorithm”, Department of Electrical and Computer Engineering Concordia
University.

 116

[11] Chu Chao, Zhang Qin, Xie Yingke and Han Chengde, “Design of a High

Performance FFT Processor Based on FPGA.”

[12] John G. Proakis, Dimitris G. Manolakis, “Digital Signal Processing Principles,

Algorithms and Applications”, Third Edition, Prentice-Hall International, INC,
1996.

[13] Douglas F. Elliot, “Handbook of Digital Signal Processing Engineering

Applications”, Rockwell International Corporation, Anaheim, California,
Academic Press, INC.

[14] Siva Kumar Palaniappan & Tun Zainal Azni Zulkifli, “Design of 16-point Radix-

4 Fast Fourier Transform jn 0.18μm CMOS Technology”, American Journal of
Applied Science 4(8), pp. 570-575, ISSN 1546–9239, 2007.

[15] Douglas Lee Jones, “Decimation-in-Frequency (DIF) Radix-2 FFT”,

http://cnx.org/content/m12018/latest/. (Accessed May 20, 2010).

[16] CMLab, DSP Research Group, Taiwan, “Fast Fourier Transform,”

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html.
(Accessed May 20, 2010).

[17] Vijay Madisetti, Douglas Bennett Williams, “The Digital Signal Processing

Handbook”, IEEE Press, CRC Press LLC, 1997.

[18] Raymond F. Bernstein, Jr. “A Pipelined Vector Processor and Memory

Architecture for Cyclostationary Processing.”, Dissertation, Department of
Electrical and Computer Engineering, Naval Postgraduate School, Monterey,
California, December 1995.

[19] Herschel H. Loomis, Jr., Notes from EC4830, Naval Postgraduate School,

Monterey, CA, Week1, March 2, 2009, (unpublished).

[20] Yao-Ting Cheng, “Autoscaling Radix-4 FFT for TMS320C6000”, application

report SPRA654, March 2000, Texas Instrument.

 117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Herschel H. Loomis, Jr.
Naval Postgraduate School
Monterey, California

4. Alan A. Ross
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. OBJECTIVE
	B. FFT DESIGN OVERVIEW
	C. BACKGROUND
	1. Space Environment and FPGA
	2. Fault Tolerance Methods—Redundancy

	D. ORGANIZATION OF THIS THESIS

	II. PREVIOUS WORK
	A. PREVIOUS THESIS
	1. Gkikas Thesis
	2. Sullivan Thesis

	B. PREVIOUS PAPERS
	1. Application Reports and Notes
	2. Papers

	III. THEORETICAL APPROACH
	A. PROBLEM DISCUSSION
	1. Discrete Fourier Transform
	2. Fast Fourier Transform
	a. Radix-2 Versus Radix-4 Versus Split-Radix
	b. In-Place Versus Constant Geometry Structure

	B. CONCEPTUAL DESIGN MODEL
	1. 64-Point Radix-4 in-Place DIF
	2. An Improved Radix-4 DIF FFT Algorithm

	IV. DESIGN IMPLEMENTATION DETAILS OF FFT
	A. DESCRIPTION
	1. Stage 1-2-3
	a. Stage Controller
	b. RAM
	c. Compute Factor
	d. BF Multiplier
	e. Multiplexer

	2. Main Controller
	3. Reversing Last Stage

	B. IMPLEMENTATION EFFORTS AND RESULTS
	1. Implementing a TMR
	2. Implementing a RPR—First Attempt—RPR Degree 8/32
	a. RPR Upper and Lower Modules
	b. Overflow Approach
	c. Ambiguity Phenomenon
	d. RPR Survey Problems

	3. Implementing a RPR—Second Attempt—RPR Degree 14/32
	a. RPR Bound Modules
	b. Verifying Results

	V. RESULTS
	VI. CONCLUSIONS AND RECOMMENDATIONS
	A. SUMMARY
	B. RECOMMENDATIONS FOR FUTURE STUDY
	1. Overflow Manipulator
	2. Implementing a 4 Recursive Butterfly FFT Instead of the 12 Butterfly FFT

	APPENDIX A. FFT IMPLEMENTATION
	A1. FFT MODULE–XILINX SCHEMATIC DESIGN
	A2. FFT MODULE—XILINX BEHAVIORAL AND STRUCTURAL DESIGN
	A2.1. Main Controller of TMR
	A2.II. Reversing Bit of Last Stage Module
	A2.III. Controller of First Stage Timescale 1ns / 1ps
	A2.IV. RAM
	A2.V. Multiplexer and Voter of Each Stage
	A2.VI. Compute Factor
	A2.VII. BF’s Multiplier
	A2.VIII. Multiplier 32x32 Module
	 A2.IX. BF Multiplier—CSA module
	A2.X. BF Multiplier—CLAH module

	APPENDIX B. TMR IMPLEMENTATION
	B1. TMR MODULE—XILINX SCHEMATIC DESIGN
	B2. TMR MODULE—XILINX BEHAVIORAL AND STRUCTURAL DESIGN
	B2.I. Multiplexer and Voter of Each Stage

	APPENDIX C. RPR IMPLEMENTATION
	C1. RPR MODULE—XILINX SCHEMATIC DESIGN
	C2. RPR MODULE—XILINX STRUCTURAL AND BEHAVIORAL DESIGN
	C2.I. Radiation Module
	C2.II. Multiplexer and Voter of Each Stage
	C2.III. BF—Delayer
	C2.IV. BF——Multiplier

	APPENDIX D. MATLAB FILE
	D1. MAIN FILE

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

